• Title/Summary/Keyword: 사하중

Search Result 193, Processing Time 0.033 seconds

A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles (축하중 재하말뚝의 하중전이 거동에 대한 수치해석)

  • 오세붕;최용규
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 1998
  • The behavior of axially loaded pile was analyzed by two methodologies: one is the finite difference method using load transfer curves recommended by API(1993) , and the other is the numerical analysis using the FLAC program. From both analyses, load-displacement curves and load distributions along the depth were evaluated appropriately for the measured. The analysis using the FLAC could capture the nonlinearity of load-displacement curve even for unloading and reloading cases, since the unloaded stress paths of fill layer elements occurred on the failure envelop. Futhermore, the measured load transfer curves were compared with the API recommendations and with the calculations obtained front the results of the FLAC analysis for the interpretation of the transfer behavior between the soil and the pile under axial loadings. It was concluded that the atrial behavior of open ended piles at Pusan could be evaluated by both the finite difference analysis using API load transfer curves and the numerical analysis using FLAC.

  • PDF

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

An Numerical Analysis of the Preloading Effect of IPS Retaining Wall through Earth Horizontal Displacement Measuring (IPS 흙막이 가시설의 수평 변위 계측을 통한 선행하중 효과 수치해석적 분석)

  • Lee, Chiho;Lee, Jonghwi;Lee, Changki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2012
  • In this study, gathered measuring data at fields constructed by IPS(Innovative Prestressed Support) system controls the ground displacement and improves the constructability of earth work and structure work greatly, and compared with horizontal displacement calculated by Elasto-plastic analysis program(EXCAV/W). As the result, displacement of calculated by pre-loading data is reduced 13.2% average of general method, and measuring displacement is also reduced 26.7% average of general method. Therefore that IPS system is more safe than conventional strut method in contrast to displacement of underground wall. In addition, horizontal displacement is reduced through the pre-loading effect used by IPS system.

An Experimental Study on the Fire Behavior of Two-way Void Slab under Standard Fire with Loading condition (표준화재 재하조건 이방향 중공슬래브의 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Yeo, In-Hwan;Kim, Heung-Youl;Cho, Kyung-Suk;Kim, Jeong-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.17-20
    • /
    • 2010
  • 기존의 무량판 구조와 동일한 이방향 슬래브구조인 TVS(two-way void slab)공법은 구조적 하중지지 성능이 불필요한 슬래브 단면상의 중앙부 콘크리트를 제거하여 슬래브의 자중을 줄이고 무량판 구조의 단점을 보완하여 장점을 극대화시킨 구조형식이다. 그러나 이러한 장점을 보유한 공법을 현장적용하기 위해서는 내화성능평가를 통해 화재안전성을 확보하여야 하므로, 이에 대한 화재 실증실험을 수행하여 현장적용을 위한 최소 요구내화 시간에 따른 내화성능 확보방안의 도출이 제시되어야 한다. 이에 본 연구에서는 TVS공법의 실제 스팬길이로 슬래브 피복두께에 따른 화재거동 영향성 분석을 위하여 화재실험을 수행하였다. 하중조건은 고정하중과 적재하중을 고려하여 실험체에 등분포 조건으로 사전재하하였으며, 표준화재조건으로 재하가열 실험을 수행하였다. 슬래브의 화재가열 노출면으로부터의 깊이별 온도변화와 처짐변형 특성을 측정하였으며, KS F 2257-1 평가기준에 의거하여 슬래브의 내화성능을 평가하였다. 실험결과 피복두께 50 mm를 확보할 경우, EPS중공체로 제작한 실험체의 경우 약 2시간정도의 내화성능을 확보할 수 있는 것으로 나타났다.

  • PDF

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests (원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가)

  • Lee, Myungjae;Yoo, Mintaek;Park, Jeongjun;Min, Kyungchan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.39-48
    • /
    • 2019
  • This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

A Measurement of Sea Transportation Load (해상운송 하중측정)

  • Jeon, Yeong-Du;Park, Jong-Chan;Jo, Cheol-Hun;Park, Dong-Su;Jeong, Ui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.143-148
    • /
    • 2006
  • This article summarizes the results of sea transportation load measurements, which will be used as the reference to the sea transportation environment condition for the launch vehicle of KSLV-I. KSLV-I will be transported by Sea from Pusan to the NARO space center in Gohung, Chunnam province. Since the vibration load condition during sea transportation is considered as one of the important design parameters of KSLV-I and its transportation means, it is necessary to directly measure the environmental condition of sea transportation loads prior to establish the sea transportation plan in detail. This material includes the measured data of 3-axis linear accelerations and 3-axis angular rates on the board of a barge-ship, which is towed by a tug boat during shipping operation. This barge-ship is same class with one which will actually carry KSLV-I. The results show that the measured load condition during sea transportation is not severer than the reference data of MIL-STD-810F and Zenit-3SL launch system.

  • PDF

Experimental Investigation of Combined Sinusoidal Loads to Simulate Soil Liquefaction Triggering under Real Earthquake Loads (실지진하중 하에서의 지반 액상화 발생을 모사하기 위한 조합 정현하중에 대한 실험적 고찰)

  • Choi, Jae Soon;Baek, Woo Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This study is an experimental comparison on the fact that the sinusoidal load, which has been used so far in the laboratory cyclic test, which is an important part of the liquefaction triggering study, is somewhat different from the phenomenon that causes the soil liquefaction during the earthquake loading. To this end, this study proposes a new type of combined sinusoidal load and compares it with experimental results to load the conventional sine wave. In the comparison, the shaking table tests were carried out and the sample in the tests was remolded with the relative density of 40%, which is a condition where liquefaction is easy to occur. Firstly, the conventional cyclic test was carried out under the condition that with the amplitude of sine wave was 0.3 g. Additionally, 3 types of tests were performed using the combination loads made up with 0.03 g sinusoidal load and 0.3g sinusoidal load. At that time, the loading time for the first sinusoidal load were changed with 5 seconds, 10 seconds, and 15 seconds. As a result, the test with the conventional sine wave and the test with the first sinusoidal loading for 5 seconds showed that the change of the pore water pressure gradually increased. But in the tests with the combined sinusoidal load which changed the first sinusoidal loading time with 10 and 15 seconds, it was found that the pore water pressure suddenly rose at a certain instant and liquefaction occurs. From the experimental comparison, it is judged that it is appropriate that the time of the first sine wave is over 10 seconds at the proposed combined load for the soil condition with relative density 40%.

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions (곡선교의 받침특성에 따른 주행차량하중분배 특성분석)

  • Kim, Sang Hyo;Lee, Yong Seon;Cho, Kwang Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.711-720
    • /
    • 2002
  • A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems, and the characteristics of load distributions differed from the others in the various conditions of support systems.

Load-deflection characteristics and plastic deformation of NiTi closed coil springs (수종의 니켈-티타늄 폐쇄형 코일 스프링의 하중-변위 특성 및 소성 변형 비교)

  • Son, Ah-Young;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.310-319
    • /
    • 2009
  • Objective: NiTi closed coil springs were reported to have relatively constant unloading forces. However, the characteristics of NiTi closed coil springs from various manufacturers have not been elucidated. The purpose of this study was to compare load-deflection characteristics of various NiTi closed coil springs and to find out the optimal range of extension. Methods: Seven kinds of NiTi closed coil springs from five manufacturers were tested. Load deflection curves were obtained at extension ranges from 2 mm to 30 mm. Also, springs were kept extended during a 4 week period, and then load deflection curves were obtained again. Results: Sentalloy (Tomy) and Jinsung blue (Jinsung) showed superelasticity in every extension ranges tested and showed plastic deformation of less than 1 mm. Ni-Ti (Ormco) showed superelasticity only after the springs were extended at or more than 10 mm, thereby meaning that clinicians should extend these springs at or more than 10 mm to utilize the superelasticity. Orthonol (RMO) and Nitanium (Ortho Organizers) did not show superelasticity. After 4 weeks of extension, all springs showed plastic deformation less than 1 mm when the extension was at or under 25 mm. Conclusions: The superelastic behavior of NiTi closed springs were different among various NiTi spring products, and some NiTi closed springs failed to show superelasticity.