• Title/Summary/Keyword: 사전균등분포

Search Result 7, Processing Time 0.028 seconds

퍼지-베이지안 방법에 대한 연구

  • Gye, Tae-Hwa;Son, Jung-Gwon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.21-26
    • /
    • 2003
  • 퍼지-베이즈 의사 결정시에 사전 분포 함수와 멤버십 함수에 파라서 퍼지-베이즈 의사 결정이 얼마나 민감하게 반응하는지 알기 위하여 연구를 진행하였다. 두 가지 퍼지 조건과 행동에서 ${\theta}$ 의 사전 분포가 정규분포와 균등분포인 경우와 표본분포가 정규분포인 경우에 대하여 민감성을 조사했다.

  • PDF

Bayes' Excuse for the Introduction of Prior Uniform Distribution (베이즈의 사전균등분포의 도입에 대한 변명)

  • PARK, Sun-Yong
    • Journal for History of Mathematics
    • /
    • v.35 no.6
    • /
    • pp.149-170
    • /
    • 2022
  • This study discusses in terms of historical genesis whether it is reasonable for Bayes to introduce a prior uniform distribution. In this study, we try to analyze the way he dealt with postulates, lemmas, and propositions in Bayes' essay and to understand its characteristics. The results of the study show that Bayes used random variables for two parameters and that the two random variables were converted to each other through cumulative distribution. Furthermore, it is revealed that the introduction of prior uniform distribution can be justified by this way.

EmoNSMC: Constructing Korean Emotion Tagging Dataset Using Distant Supervision (EmoNSMC: Distant Supervision 을 이용한 한국어 감정 태깅 데이터셋 구축)

  • Lee, Young-Jun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.519-521
    • /
    • 2019
  • 최근 소셜 메신저를 통해 많은 사람들이 의사소통을 주고받음에 따라, 텍스트에서 감정을 파악하는 것이 중요하다. 따라서, 감정이 태깅된 데이터가 필요하다. 하지만, 기존 연구는 감정이 태깅된 데이터의 양이 많지가 않다. 이는 텍스트에서 감정을 파악하는데 성능 저하를 야기할 수 있다. 이를 해결하기 위해, 본 논문에서는 단어 매칭 방법과 형태소 매칭 방법을 이용하여 많은 양의 한국어 감정 태깅 데이터셋인 EmoNSMC 를 구축하였다. 구축한 데이터셋은 네이버 영화 감상 리뷰 데이터 (NSMC)에 디스턴트 수퍼비전 방법 (distant supervision) 방법을 적용하여 weak labeling을 진행하였고, 이 과정에서 한국어 감정 어휘 사전 (KTEA) 을 이용하였다. 구축된 데이터셋의 감정 분포 결과, 형태소 매칭 방법을 통해 구축한 데이터셋이 좀 더 감정 분포가 균등한 것을 확인할 수 있었다. 해당 데이터셋은 공개되어 있다.

  • PDF

Construction of Urban Crime Prediction Model based on Census Using GWR (GWR을 이용한 센서스 기반 도시범죄 특성 분석 및 예측모델 구축)

  • YOO, Young-Woo;BAEK, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.65-76
    • /
    • 2017
  • The purpose of this study was to present a prediction model that reflects crime risk area analysis, including factors and spatial characteristics, as a precursor to preparing an alternative plan for crime prevention and design. This analysis of criminal cases in high-risk areas revealed clusters in which approximately 25% of the cases within the study area occurred, distributed evenly throughout the region. This means that using a multiple linear regression model might overestimate the crime rate in some regions and underestimate in others. It also suggests that the number of deserted houses in an analyzed region has a negative relationship with the dependent variable, based on the multiple linear regression model results, and can also have different influences depending on the region. These results reveal that closure signs in a study area affect the dependent variable differently, depending on the region, rather than a simple or direct relationship with the dependent variable, as indicated by the results of the multiple linear regression model.

A Sampling based Pruning Approach for Efficient Angular Space Partitioning based Skyline Query Processing (효율적인 각 기반 공간 분할 병렬 스카이라인 질의 처리를 위한 데이터 샘플링 기반 프루닝 기법)

  • Choi, Woo-Sung;Min, Jong-Hyeon;Chung, Jaehwa;Jung, SoonYoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.55-58
    • /
    • 2016
  • 스카이라인 질의란 다수의 선택지 중 '선호될 만한(preferable)' 선택지를 요청하는 질의이다. 사용자가 검토해야하는 선택지의 수를 대폭 감소시키는 스카이라인 질의는 데이터가 폭증하는 빅데이터 환경에서 매우 유용하게 활용된다. 이러한 배경에서 대용량 데이터에 대한 스카이라인 질의를 분산 병렬 처리하는 기법이 각광을 받고 있으며, 특히 맵리듀스(MapReduce) 기반의 분산 병렬 처리 기법 연구가 활발히 진행 중이다. 맵리듀스 기반 알고리즘의 병렬성 제고를 위해서는 부하 불균등 문제 중복 계산 문제 과다한 네트워크 비용 발생 문제를 해소해야 한다. 최근 각 기반 공간분할 기법을 사용하여 부하 불균등 문제와 중복 계산 문제를 해소하는 맵리듀스 기반 스카이라인 질의 처리 기법이 제안되었으나 해당 기법은 네트워크 비용 관점에서 최적화되어있지 않다. 본 논문에서는 부하 불균등 문제와 중복 계산 문제를 해소하면서도 프루닝을 통해 네트워크 비용 절감 시킬 수 있는 새로운 맵리듀스 기반 병렬 스카이라인 질의 처리 기법인 MR-SEAP(MapReduce sample Skyline object Equality Angular Partitioning)을 제안한다. MR-SEAP에서는 데이터를 샘플링하여 샘플 스카이라인 객체를 추출한 뒤 해당 객체들을 균등 분배하는 각도를 기준으로 공간을 분할하여 스카이라인 질의를 병렬 계산하되, 샘플 스카이라인을 이용하여 다수의 객체를 사전에 프루닝함으로써 네트워크 비용을 절감한다. 본 논문에서는 다양한 데이터 수량(cardinality) 및 분포(distribution)에 따른 제안 기법의 성능을 실험 평가함으로써 제안 기법의 우수성을 검증한다.

Optimization of Booster Disinfection Scheduling in Water Distribution Systems using Artificial Neural Networks (인공신경망을 이용한 상수관망 염소 재투입 스케줄링 최적화)

  • Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.18-18
    • /
    • 2018
  • 상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.

  • PDF

Developing Cognition and Preference Contours of a City Image - A Case Study of Seongnam City - (도시이미지 인지와 선호등위선 개발 - 성남시를 대상으로 -)

  • Byeon, Jae-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.1-14
    • /
    • 2010
  • Areas with negative images in cities can degrade the image of the city as a whole and slow the city's efforts to improve its image. The identification of such areas and the development of a city contour that charts the images of various areas in advance can help urban planners establish relevant strategies to ameliorate detrimental images of the city. This study intends to draw a contour of Seongnam City according to citizen's cognition levels of and preference for city area images and aim to shift the strategy of urban image planning from being results-oriented to being process-oriented. The results of this study are as follows: First, an analysis of the level of cognition of and preferences for Seongnam City's landmarks shows that the degree of cognition varies in different areas, whereas that of preferences remains similar; Second, the cognition and preference contour makes it easy to assess and diagnose city images; Third, the image management map, which merges the cognition contour with the preference contour, divides the city into four different areas. In order to manage city images, it follows that those areas with a high degree of cognition but low preference need to be classified and dealt with first. Further, this study shows that those areas with high cognition are the most populated and visited. Areas with high preference can become a strong candidate for being a landscape control point of a city, which adds to the usefulness of this study. The contour of Seongnam will contribute to networking sightseeing areas for visitors centered upon those places of high preference. It would appear that this type of networking will inspire a better image for the city.