• Title/Summary/Keyword: 사장교의 시공

Search Result 70, Processing Time 0.031 seconds

A Study for Finding Optimized Cable Forces of Cable Stayed Bridge (사장교 케이블 최적 장력 보정에 관한 연구)

  • Park, Dae-Yong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.16-20
    • /
    • 2012
  • During construction of the cable-stayed bridge, not only shape of deck and pylon but also cable forces are main factors for geometry control. Especially, geometry control of deck must be controlled for adjusting design value of vertical and lateral alignment as well as closing of key segment. Also, both the deck level error and cable force error occur necessarily during the construction stage in cable stayed bridge. The errors are caused by different of material properties and computer modeling, and construction mistake, and so on. These causes bring about that the forces of cable and the displacement of deck show different tendency from the theoretical values. Therefore, these errors must necessarily be adjusted and can be improved through adjustment of cable length. In this study, a new optimization tool is proposed to adjust the errors of the second Dolsan cable-stayed bridge.

Design Process of Fixing Pipe in Guide Pipe-Anchor System for Cable-Stayed Bridge (사장교 가이드 파이프 앵커 형식에서의 정착강관 설계절차)

  • Hong, Sung Nam;Park, Sun Kyu;Park, Byung Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.212-220
    • /
    • 2011
  • These days, many cable-stayed bridges were constructed in accordance with the trend in Korea. At the moment, construction technology of cable-stayed bridges has been remarkably developed but design technology still relies upon foreign technology very much. The cable anchor system that is one of key technologies of cable-stayed bridge brings powerful cable tension to produce local stress concentration and to disturb stress seriously, so for safety must be designed by a local detailed analysis is required. But without a clear design standard or design theory relying on F.E.M, and engineers don't understand theoretical basic mechanism of cable anchor system. As a result, engineers can be lose their judgement. Accordingly, this study examined theoretical design flow of fixing pipe in guide pipe-anchor system and additional considerations, in accordance with design standards at home and abroad to keep them in order and to suggest supplementary design flow.

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Nonlinear FEM analysis of Cable-stayed PSC Bridges Considering Time-dependent Behavior (시간 의존적 거동을 고려한 PSC 사장교의 비선형 유한요소해석)

  • Cho, Hwak-Shin;Seong, Dae-Jeong;Im, Duk-Ki;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • In this paper the nonlinear analysis that include time-dependent characteristics of materials and geometric nonlinearity of elements for the cable-stayed PSC bridges is presented. Analysis models for finite element method were developed based on the flexibility based fiber beam-column model originally proposed by Spacone et al.(1996). The developed analysis model implemented in general purpose object-oriented finite element analysis program named HFC(Cho 2009). The performance of proposed analysis models is evaluated by comparing with the former results of the design data. The deflection of time dependent analysis is larger than time ignored analysis on construction sequences, and the bridge is destructed at a smaller deflection than the time ignored analysis on failure behavior.

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.