온라인 게임의 다양한 보안 위협 가운데, 온라인 게임 봇의 사용이 게임 서비스에 가장 심각한 문제를 야기하고 있다. 본 논문에서는 온라인 게임 봇 탐지를 위한 소셜 액티비티 분석 프레임워크를 제안한다. 이 프레임워크를 이용하여 게이머의 소셜 액티비티를 가장 많이 포함하고 있는 파티 플레이(party play) 로그를 분석하는 데에 적용하였다. 게임 봇은 일반 사용자들과 다르게, 사이버 자산을 빠르게 얻는데 특화되어 있기 때문에 소셜 액티비티를 분석할 경우 정상적인 사용자들과 행동 패턴에 차이가 있다. 이 특징을 이용하여 게임 봇 이용자와 일반 이용자들을 구분해 낼 수있도록, 사용자 행위를 분석하고 온라인 게임 봇 탐지를 위한 임계값을 정의하였다. 탐지 규칙을 포함하는 지식 기반 시스템을 구축한 뒤 이를 국내 최대, 세계 6위 규모의 게임에 적용하였다. 본 논문의 프레임워크를 활용하여 분류를 한 결과 95.92%의 높은 정확도를 보였다.
운전자의 안전성 및 편의성을 향상시키기 위하여, 최근 자동차에는 다수의 전자제어장치가 탑재되고 있다. 전자제어장치들은 차량의 상태를 서로 공유하기 위하여 일반적으로 CAN 통신 프로토콜을 이용하여 통신한다. 현대의 자동차는 안전성 및 편의성과 관련된 최첨단 서비스를 제공하고 있지만, 사이버보안 위협에 대한 Attack Surface가 증가하는 문제점이 있다. 자동차 해킹의 경우에는 운전자 생명과 직접적 영향이 있기 때문에, 이에 대응하기 위한 자동차 보안 기술 개발은 매우 중요하다. 차량용 침입탐지 기술은 자동차 해킹에 대응하기 위해 연구되고 있는 가장 대표적인 자동차 보안 기술 중 하나지만, 현재 제품화 가능한 수준의 차량용 침입 탐지 기술은 모두 주기 메시지에 대한 침입 탐지 여부만 분석이 가능하고 주기 메시지와 이벤트 메시지가 혼합된 형태인 PE (Periodic-and-on-Event) 메시지에 대해서는 분석이 어렵다. 본 논문에서는 PE 메시지를 이용하여 자동차 내부 네트워크에 침입하는 공격자 유형을 분류하고 이를 탐지할 수 있는 기법을 제안한다. 그리고 실제 차량에서 제안하는 기법을 우리의 공격자 모델에서 평가한 결과 0%의 FPR과 FNR을 보여준다.
사이버공격으로 인한 보안위협이 지속되고 있어 보안관제는 신속한 탐지와 대응을 위해 전문성을 가진 용역사업 형태로 주로 운용된다. 이에 따라 보안관제 용역 운영에 대한 다수의 연구가 진행되었다. 그러나 결과적인 관리, 지표, 측정 등의 연구로 업무과정에 대해 세부적으로 연구되지 않아 현장에서 업무 혼선이 빚어져 보안사고 대응이 원활하지 않다. 본 논문에서는 이런 문제점을 ISMS-P 기반의 용역관리 방법을 제시하고 그 방법을 업무 연관성 분석을 통해 시나리오기법과 ISMS-P 보호대책 요구사항 64개 항목의 맵핑(Mapping)으로 도출된 각 항목을 체크리스트화 하여 사용업체의 용이한 외주용역 관리 방법을 제안한다. 또한 주기적 보안준수 이행과 중장기적으로는 ISMS-P의 취득 및 갱신에 도움이 되고 관련 인원들의 보안의식 제고에도 기여할 것으로 기대한다.
기업이나 기관의 데스크톱 및 엔터프라이즈 서버용 운영체제로 마이크로소프트사의 Windows가 많이 활용되고 있고 사이버 공격의 주요 대상이 되고 있다. 마이크로소프트사는 다양한 보호 기술을 제공하고 주기적인 보안 패치를 통해 노력하고 있지만, 여전히 DLL 인젝션(injection)이나 프로세스 인젝션 등의 공격 위협이 존재하고 있다. 본 논문에서는 Windows 시스템에서 12가지 인젝션 공격 기법에 대해 분석하고, 4개의 응용 프로그램들을 대상으로 인젝션 공격 실험을 수행한다. 실험 결과를 통해 인젝션 공격의 위험성을 파악하고, 마이크로소프트에서에서 제공하는 인젝션 공격에 대한 완화 기술의 유효성을 검증한다. 실험 결과, 현재 응용 프로그램들이 여러 인젝션 공격에 취약함을 알 수 있었다. 최종적으로, 이러한 인젝션 공격에 대한 완화 기법을 제시하고 효용성을 분석하였다.
Junho Jang;Saehee Jun;Huiju Lee;Jaegwan Yu;SungJin Park;Su-Youn Hong;Huy Kang Kim
한국컴퓨터정보학회논문지
/
제28권5호
/
pp.57-66
/
2023
본 논문에서는 Enterprise 네트워크 이외 환경에서의 공격 그래프 연구 중 최근 5년간 가장 많이 연구된 사이버-물리 시스템(CPS) 환경에 대한 공격 그래프 연구 동향을 살펴보고, 기존 연구의 한계와 앞으로 나아갈 방향을 분석한다. 최근 5년간 발표된 공격 그래프 논문 150여 편 중 35편이 CPS 환경을 대상으로 하고 있으며, 본 논문에서는 CPS 환경의 보안 측면 특징을 살펴보고, 대상 연구들을 이러한 특징들에 따라 물리 시스템 모델링 여부와 네트워크 단절 구간에 대한 고려 여부의 두 가지 관점으로 분류 및 분석한다. 본 논문에서 소개한 20편의 논문 중 절반이 CPS 환경의 특징을 제대로 반영하지 못하며, 나머지 절반의 연구가 물리 시스템 모델링과 네트워크 단절 구간 중 하나씩을 다루고 있다. 본 논문에서는 이러한 상황을 바탕으로 CPS 환경에서의 공격 그래프 연구가 직면한 어려움을 진단하고 이에 따라 앞으로의 CPS 환경 공격 그래프 연구는 국가주도 연구, 공개된 상용 시스템을 대상으로 한 연구가 주를 이룰 것으로 분석한다.
공격 양상이 더욱 지능화되고 다양해진 봇넷은 오늘날 가장 심각한 사이버 보안 위협 중 하나로 인식된다. 본 논문은 UGR과 CTU-13 데이터 셋을 대상으로 반지도 학습 딥러닝 모델인 오토엔코더를 활용한 봇넷 검출 실험결과를 재검토한다. 오토엔코더의 입력벡터를 준비하기 위해, 발신지 IP 주소를 기준으로 넷플로우 레코드를 슬라이딩 윈도우 기반으로 그룹화하고 이들을 중첩하여 트래픽 속성을 추출한 데이터 포인트를 생성하였다. 특히, 본 논문에서는 동일한 흐름-차수(flow-degree)를 가진 데이터 포인트 수가 이들 데이터 포인트에 중첩된 넷플로우 레코드 수에 비례하는 멱법칙(power-law) 특징을 발견하고 실제 데이터 셋을 대상으로 97% 이상의 상관계수를 제공하는 것으로 조사되었다. 또한 이러한 멱법칙 성질은 오토엔코더의 학습에 중요한 영향을 미치고 결과적으로 봇넷 검출 성능에 영향을 주게 된다. 한편 수신자조작특성(ROC)의 곡선아래면적(AUC) 값을 사용해 오토엔코더의 성능을 검증하였다.
클라우드 서비스 취약점을 이용한 보안 사고가 발생하고 있으나, 복잡하고 다양한 서비스 모델을 갖는 클라우드 환경에서의 사고 흔적을 수집하고 분석하는 것은 어려운 문제이다. 이에 클라우드 포렌식 연구의 중요성이 대두되며, 퍼블릭 클라우드 서비스 모델에서의 대표적 보안 위협 사례에 기반한 클라우드 서비스 사용자(CSU)와 클라우드 서비스 제공자(CSP) 관점에서 침해 사고 대응 시나리오를 디자인해야 할 필요가 있다. 본 모의해킹 기반 사전 예방적 클라우드 침해 사고 대응 프레임워크가 클라우드를 대상으로 사이버 공격이 발생하기 전, 취약점 탐지 관점에서 클라우드 서비스 중요 자원 공격 프로세스에 대한 대응 방안에 활용할 수 있고, 포렌식 과정에서 침해 사고 포렌식을 위해 데이터 수집(data acquisition)을 위한 목적으로도 기대할 수 있다. 따라서 본 논문에서는 클라우드 침투 테스트 도구인 Cloudfox를 분석 및 활용하여 모의해킹 기반 사전 예방적 클라우드 침해 사고 대응 프레임워크를 제안한다.
최근, 디지털전환의 확대로 사이버공격의 위협에 더욱 더 노출되고 있으며, 각 기관 및 기업은 공격이 유입되는 것을 막기 위해 시그니처 기반의 침입차단시스템을 네트워크 가장 앞단에 운영중에 있다. 그러나, 관련된 ICT시스템에 적절한 서비스를 제공하기 위해 엄격한 차단규칙을 적용할 수 없어 많은 오이벤트가 발생되고, 운영효율이 저하되고 있다. 따라서, 공격탐지 정확도 향상을 위하여 인공지능을 이용한 많은 연구과제가 수행되고 있다. 대부분의 논문은 정해진 연구용 데이터셋을 이용하여 수행하였지만, 실제 네트워크에서는 연구용 학습데이터셋과는 다른 로그를 이용해야만 하기 때문에 실제 시스템에서는 사용사례는 많지 않다. 본 논문에서는 실제 시스템에서 수집한 보안이벤트 로그에 대하여 주요 공격키워드를 분류하고, 주요 키워드별로 가중치를 부과, TF-IDF를 이용하여 유사도 검사를 수행후 실제 공격여부를 판단하는 기법에 대하여 제안하고자 한다.
최근 블록체인 기술이 부상하면서 이를 이용한 암호화폐 플랫폼이 늘어나며 화폐 거래가 활발이 이뤄지고 있다. 그러나 암호화폐의 특성을 악용한 범죄 또한 늘어나 문제가 되고 있다. 특히 피싱 스캠은 이더리움 사이버 범죄의 과반수 이상을 차지하며 주요 보안 위협원으로 여겨지고 있다. 따라서 효과적인 피싱 스캠 탐지 방법이 시급하다. 그러나 전체 이더리움 참여 계정 주소에서 라벨링된 피싱 주소의 부족으로 인한 데이터 불균형 문제로 지도학습에 충분한 데이터 제공이 어려운 상황이다. 이를 해결하기 위하여 본 논문에서는 이더리움 트랜잭션 네트워크를 고려한 효과적인 그래프 임베딩 기법인 trans2vec과 준지도 학습 모델 tri-training을 함께 사용하여 라벨링된 데이터 뿐만 아니라 라벨링되지 않은 데이터도 최대한 활용하는 피싱 스캠 탐지 방법을 제안한다.
IT 기술의 발달에 따라, 컴퓨터 관련 범죄가 빠르게 급증하고 있으며 특히 최근에는 국내외에서 랜섬웨어감염에 대한 피해가 급격하게 늘어나고 있다. 기존의 보안 솔루션으로는 랜섬웨어 감염을 방지하기에는 역부족이며 나날이 발전하는 악성코드 및 랜섬웨어와 같은 위협을 방지하기 위해서는 딥러닝 기술을 결합하여 비정상 행위 및 이상 징후를 탐지하는 기법이 필요하다. 본 논문에서는 CNN-LSTM 모델 및 다양한 딥러닝 모델을 사용하여 사용자 비정상 행위를 탐지하는 기법을 제안했으며, 그중 제안하는 모델인 CNN-LSTM 모델의 경우 액 99%의 정확도로 사용자 비정상 행위를 탐지해내는 것을 확인할 수 있었다. 본 연구를 활용하여 사용자 비정상 행위의 랜섬웨어 특징점을 파악하여 랜섬웨어를 방지하는 시스템을 마련하는 데 도움을 줄 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.