본 논문에서는 스마트폰 사용자의 실시간 상황 인식을 위한 효과적인 사운드 분류 시스템을 제안한다. 이 시스템에서는 PCM 형태의 사운드 입력 데이터에 대한 전처리를 통해 고요한 사운드와 화이트 노이즈를 학습 및 분류 단계 이전에 미리 여과함으로써, 계산 자원의 불필요한 소모를 막을 수 있다. 또한 에너지 레벨이 낮아 신호의 패턴을 파악하기 어려운 사운드 데이터는 증폭함으로써, 이들에 대한 분류 성능을 향상시킬 수 있다. 또, 제안하는 사운드 분류 시스템에서는 HMM 분류 모델의 효율적인 학습과 적용을 위해 k-평균 군집화를 이용하여 특징 벡터들에 대한 차원 축소와 이산화를 수행하고, 그 결과를 모아 일정한 길이의 시계열 데이터를 구성하였다. 대학 연구동내 다양한 일상생활 상황들에서 수집한 8가지 유형의 사운드 데이터 집합을 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 사운드 분류 시스템의 높은 성능을 확인할 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.3
no.2
/
pp.81-86
/
2014
In this paper, we present an effective sound classification system for recognizing the real-time context of a smartphone user. Our system avoids unnecessary consumption of limited computational resource by filtering both silence and white noise out of input sound data in the pre-processing step. It also improves the classification performance on low energy-level sounds by amplifying them as pre-processing. Moreover, for efficient learning and application of HMM classification models, our system executes the dimension reduction and discretization on the feature vectors through k-means clustering. We collected a large amount of 8 different type sound data from daily life in a university research building and then conducted experiments using them. Through these experiments, our system showed high classification performance.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.155-156
/
2013
소셜 TV 사용 시, 사용자들은 TV를 시청하면서 타 사용자와의 소통을 위해 리모컨을 이용해서 텍스트를 작성해야하는 불편함을 가지고 있다. 본 논문에서는 소셜 TV의 이러한 불편함을 해결하기 위해 사용자 반응 사운드를 자동으로 인식하여 상대방에게 이모티콘을 전달하기 위한 시스템을 제안하며, 사용자 반응 사운드 인식에 사용되는 분류방식들을 비교한다. 사용자 반응 사운드 인식을 위해 사용되는 분류 방식들 중에서, Gaussian Mixture Model(GMM), Gaussian Mixture Model - Universal Background Model(GMM-UBM), Hidden Markov Model(HMM), Support Vector Machine(SVM)의 성능을 비교하였다. 각 분류기의 성능을 비교하기 위하여 MFCC 특징값을 각 분류기에 적용하여 사용자 반응 사운드 인식에 가장 최적화된 분류기를 선택하였다.
본 논문은 영화에 나오는 효과음을 자막으로 생성해주는 자동자막생성을 제안하며, 그의 첫 단계로써 다중 사운드 분류 모델을 제안하였다. 고양이, 강아지, 사람의 음성을 분류하기 위해 사운드 데이터의 특정벡터를 추출한 뒤, 4가지의 기계학습에 적용한 결과 최적모델로 딥러닝이 선정되었다. 전처리 과정 중 주성분 분석의 유무에 따라 정확도는 81.3%와 33.3%로 확연한 차이가 있었으며, 이는 복잡한 특징을 가지는 사운드를 분류하는데 있어 주성분 분석과 넓고 깊은 형태의 신경망이 보다 개선된 분류성과를 가져온 것으로 생각된다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.341-344
/
2004
발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.
In this paper, we propose a method for classifying environmental sound for selective noise cancellation in industrial sites. Noise in industrial sites causes hearing loss in workers, and researches on noise cancellation have been widely conducted. However, the conventional methods have a problem of blocking all sounds and cannot provide the optimal operation per noise type because of common cancellation method for all types of noise. In order to perform selective noise cancellation, therefore, we propose a method for environmental sound classification based on deep learning. The proposed method uses new sets of acoustic features consisting of temporal and statistical properties of Mel-spectrogram, which can overcome the limitation of Mel-spectrogram features, and uses convolutional neural network as a classifier. We apply the proposed method to five-class sound classification with three noise classes and two non-noise classes. We confirm that the proposed method provides improved classification accuracy by 6.6% point, compared with that using conventional Mel-spectrogram features.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.31-32
/
2017
본 논문에서는 심층 신경망 기반의 사운드 분류를 위한 청각 특성 추출 기술을 제안한다. 심층 신경망은 인간의 신경망을 모델링 하기 때문에 인간의 인식을 기반으로 하는 특성을 사용한다면 더 적합한 학습을 할 수 있다. 기존 방법인 MFCC와 스펙트로그램과는 달리 스파이크그램은 인간의 청각 시스템을 기반으로 파형을 해석하는 방법이기 때문에 심층 신경망에 더 효율적인 특성이라고 할 수 있다. 따라서 본 논문에서는 사운드 분류 기술의 특성으로 스파이크그램을 이용하는 방법을 제안한다. 제안한 방법을 사용하면 MFCC와 스펙트로그램을 사용하는 것보다 더 높은 분류 성능을 얻을 수 있다.
현재까지 유해한 컨텐츠(Contents)를 차단하기 위한 활발한 연구가 있었으나, 사람의 사운드(sound)와 이미지(image)를 통합한 필터링(filtering) 기법에 대한 연구는 활발히 이루어지지 않은 측면이 있다. 본 논문은 이미지(image) 데이터 중 피부색 분포 비율과 사운드(sound) 데이터 중 주파수 분석을 통한 심층적인 기법을 활용하여 현재까지 진행되고 있는 이미지 필터링(image filtering)방법에 대한 수행 결과보다 획기적으로 개선된 성능을 보이고자 한다. 즉, 사운드와 이미지의 특징 정보를 이용한 성인 컨텐츠(Adult Contents)분류 기법을 활용하는 것으로 성인 컨텐츠(Adult Contents)에서 두드러지는 특징을 보이는 사운드 패턴을 분석하여 현재까지 한정된 자원인 이미지만을 활용한 기법보다는 현저한 향상된 수행능력을 예측해 볼 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.257-258
/
2019
이 논문에서는 가정내 음향 상황에 대한 사운드 이벤트 검출을 수행하는 시스템을 개발하는 내용을 담고 있다. 사운드 이벤트 검출 시스템은 마이크로폰 입력에 대해서 입력신호로부터 특징을 추출하고, 특징으로부터 이벤트가 있었는지 아닌지를 분류하는 형태를 가지고 있다. 본 연구에서는 독립형 디바이스가 가정내 위치한 상황을 가정하여 개발을 진행하였다. 가정내에서 일어날 수 있는 음향 상황을 가정하고 데이터셋 녹음을 진행하였다. 데이터셋을 기반으로 특징과 분류기를 개발하였으며, 적은 계산량으로 결과를 출력해야 하는 독립형 디바이스에 활용하기 위해서 특징셋을 간소화하는 과정을 거쳤다. 개발결과는 가정의 거실환경에서 녹음된 소리를 스피커로 출력하여 테스트하였으며, 다양한 음향 상황에 대한 개발이 추가적으로 필요하다.
Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
The Journal of Korean Institute of Information Technology
/
v.16
no.11
/
pp.11-21
/
2018
Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.