• 제목/요약/키워드: 사용자 키워드학습

검색결과 84건 처리시간 0.035초

온톨로지 기반의 계층적 개념 인덱싱을 이용한 사용자 관심사 학습 (Learning User Interest using Hierarchical Concept indexing based on Ontology)

  • 박지현;김흥남;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.646-648
    • /
    • 2005
  • 인터넷의 급속한 성장과 더불어 사용자들은 인터넷을 통해 많은 정보를 얻을 수 있게 되었으며 최신 뉴스를 실시간으로 접근할 수 있게 되었다. 이에 따라 방대한 정보 속에 사용자 관심사에 맞는 정보를 효과적으로 검색하기 위한 여러 방법들이 연구되어 왔다. 하지만 기존의 많은 선행 연구들은 단어 빈도 기반의 키워드 벡터 모델을 이용하여 사용자의 관심사를 학습하고 있다. 이러한 키워드 벡터 모델은 사용자의 선호도를 명확하게 기술하지 못하고 키워드를 이용한 특징 벡터 (feature-vector)는 개념들 사이의 관계를 찾기 어려운 한계를 가지고 있다. 이를 개선하기 위해 본 논문에선 계층적 개념 인덱싱(Hierarchical Concept Indexing)을 이용한 온톨로지 형태의 개인화된 사용자 프로파일을 만드는 방법을 제안한다. 생성된 사용자 프로파일에 개념 간의 유사도와 개념에 대한 사용자의 관심도를 고려하여 보다 개인의 선호도에 맞는 기사를 제공한다. 실험에서는 제안된 방법의 성능 평가를 위해서 기존의 키워드 벡터 모델의 학습 방법인 WebMate 시스템과 비교 분석하였다. 그 결과 제안하는 방법이 키워드 벡터를 이용한 학습 방법보다 향상된 성능을 보였다.

  • PDF

인터넷 채팅 도메인에서의 감성정보를 이용한 타관점 사용자 선호도 학습 방법 (Multi-perspective User Preference Learning in a Chatting Domain)

  • 신욱현;정윤재;맹성현;한경수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 개인화 서비스와 같은 지능정보 시스템을 위해서는 사용자 선호도의 학습은 중요한 연구 분야이다. 본 연구에서는 채팅 도메인에서의 사용자 선호도를 학습하는 방법을 제시하며, 기존의 평면적인 사용자 선호도 모델의 문제점을 해결하기 위한 사용자 선호도 모델을 제안한다. 사용자가 선호도 학습의 대상에 대하여 얼마나 관심이 있는가를 나타내는 관심도와 대상에 대한 감성을 나타내는 호감도 라는 요소로 모델링 할 수 있다. 자연어 처리를 통해 현재 대화에서의 주제 탐지와 호감도 분석을 하고, 이를 이용하여 사용자의 선호도와 호감도를 학습한다. 시간의 흐름에 따라 변하는 사용자 선호도의 특징을 고려하여, 사용자 선호도를 세션, 단기, 장기 선호도로 나누어 계산한다. 사용자선호도 학습의 대상이 되는 키워드와 주제에 대하며 시간에 따라 변하는 사용자의 선호도 변화를 고려하여 선호도 결정을 한다 사용자 선호도 학습 효과의 검증을 위하여 사용자 평가를 하였으며 주제 선호도, 키워드 선호도, 키워드 호감도에 대하여 각각 86.52%, 86.28%, 87.22%의 성능을 보였다.

웹 서비스 발견을 위한 클러스터와 온톨로지 매칭 알고리즘 (Cluster and Ontology Matching Algorithms for Web Services Discovery)

  • 이용주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.483-486
    • /
    • 2009
  • 본 논문은 클러스터링 탐색 방법과 온톨로지 학습 방법을 융합하여 보다 더 효율적인 검색 방안을 제안한다. 이를 통해 키워드가 정확하게 일치하지 않더라도 사용자가 원하는 웹 서비스를 검색할 수 있고, 반대로 키워드가 일치하지만 사용자가 의도하지 않은 웹 서비스는 검색 결과에서 제거할 수 있다. 주된 아이디어는 매개변수들 사이의 숨은 시맨틱 개념을 찾아내어 온톨로지를 학습하고, 확장된 키워드 탐색 방법과 온톨로지 활용 방법을 혼합 사용하여 보다 지능적인 웹 서비스 매칭을 수행하는 것이다.

자연어처리를 통한 온라인 학습 플랫폼 사용자 질의 답변 및 Word cloud를 활용한 키워드 시각화 (Answering User Queries on Online Learning Platforms through Natural Language Processing and Keyword Visualization Using Word Cloud)

  • 유경록;정영섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.351-354
    • /
    • 2024
  • 최근 온라인 학습의 비중이 증가함에 따라 온라인 학습 서비스의 일부인 온라인 상담 부분도 비례하여 증가하고 있으며, 많은 상담량으로 인해 상담 서비스의 품질이 저하되고 답변의 속도, 효율성도 감소하는 문제가 발생한다. 국내 교육기관에서는 서비스 개선과 사용자 맞춤형서비스를 제공하기 위해 다양한 연구를 진행하고 있으며 민원을 처리하는 챗봇 등 자동 답변 서비스 도입을 추진하고 있다. 챗봇 및 자동 답변 서비스는 서비스 제공자 입장에서 저예산으로 단순한 질문에 대하여 신속하고 효율적인 서비스를 제공할 수 있으며 서비스 이용자는 즉각적인 답변과 유사한 답변 예시를 확인함으로 질문을 빠르게 해결할 수 있는 장점이 있다. 국가 공공기관에서 제공하는 학습 서비스는 단순하고 반복적인 문의가 많고 정형적인 질의응답이 주로 등록이 되고 있다. 자동 답변 서비스는 이런 문제점을 해결할 수 있는 대안이 된다. 서비스 이용자가 등록한 문의를 기반으로 학습한 답변 서비스는 담당자의 반복된 업무처리 경감과 사용자의 답변감소, 일관된 답변처리로 서비스 품질개선에 큰 영향을 줄 수 있다. 본 연구에서는 사용자의 질문에 효율적인 답변 및 민원 처리 서비스를 제공할 수 있는 방법을 제시하며, 관리자의 업무능력 향상과 효율성을 위해 기간별 키워드 빈도수를 계산하여 Word cloud를 생성하여 제공함으로써 사용자들에게 일정 기간 내 빈도수가 높은 키워드 관련 공지 및 안내를 할 수 있도록 한다.

  • PDF

사용자 프로파일 기반 개인 웹 에이전트 (User Profile based Personalized Web Agent)

  • 소영준;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.248-256
    • /
    • 2000
  • 본 논문은 웹을 이용해 정보를 검색하는 사용자의 관심도를 사용자 프로파일로 구축하여 구체적이고 정확한 사용자 관심 정보를 제공하는 개인 웹 에이전트를 구축하는데 목적을 두고 있다. 사용자에게 웹 검색 행위를 감시하는 모니터 에이전트에 자신의 관심도를 직접 기술하여 관심문서 정보를 구축하고 이에 대한 정확도를 향상시키기 위한 여러 키워드 추출작업을 수행한다. 추출된 키워드는 학습서버의 작업에 의해 사용자별 프로파일을 생성하여 이를 사용자가 확인 및 편집할 수 있게 하였다. 본 논문에서 구현하고자 하는 웹 에이전트의 사용자 프로파일 구축작업에는 사용자 관심 문서 정보의 정확한 키워드추출작업과 학습 작업이 매우 중요하다. 이에 본 논문에서는 키워드 추출에 적용되는 여러 가중치 설정작업에 대하여 중점적으로 다루며 적용된 귀납적 기계학습에 대하여 알아본다. 이로써 구축된 사용자 프로파일은 관심 문서를 검색하는데 적절한 정보를 제시한다. 이에 따라 사용자 프로파일을 본 웹 에이전트에서 구현한 사용자 적응형 웹 검색 에이전트와 사용자 적응형 푸쉬 에이전트에 적용하여 사용자에게 적합한 서비스를 제공한다.

  • PDF

Word2Vec 기반 장르 유사성을 활용한 웹툰 검색 (Webtoon Search utilizing Genre Similarity with Word2Vec)

  • 이창민;안제정;강동연;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.503-505
    • /
    • 2019
  • 본 논문에서는 기존 웹툰 장르 검색 시스템의 단점을 보완하기 위해 키워드 기반 유사 장르 검색 시스템을 제안한다. 기존 웹툰의 장르와 키워드를 분석하여 44개의 장르를 설정하고 해당 장르에 적합한 웹툰을 수집한다. 나무위키와 위키피디아 문서로 학습된 Word2Vec모델에 기반하여 계산한 사용자 입력 키워드와 44개의 장르간 유사도로 사용자 입력에 가장 유사한 장르를 찾는다. 유사 장르에 포함되는 웹툰을 결과로 출력하여 사용자가 선호하는 장르의 웹툰을 제시한다. 실험 결과에서는 나무위키에서 '장르'로 검색하여 얻는 작은 크기의 문서 집합에서 Word2Vec을 학습한 모델에서 가장 높은 검색 성능을 보였다.

  • PDF

챗봇 프레임워크 성능 향상을 위한 점진적 학습 기법 (Incremental Learning for Performance Enhancement of Chatbot Framework)

  • 박상현;박진욱;조수헌;현제혁;황진성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.283-284
    • /
    • 2019
  • 규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.

  • PDF

키 프레임의 주석과 비교 영역 학습을 이용한 비디오 검색 시스템의 구현 (Implementation of a Video Retrieval System Using Annotation and Comparison Area Learning of Key-Frames)

  • 이근왕;김희숙;이종희
    • 한국멀티미디어학회논문지
    • /
    • 제8권2호
    • /
    • pp.269-278
    • /
    • 2005
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 사용자의 키워드 학습과 비교 영역 학습을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화된 비디오 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 색상 히스토그램 비교기법과 제안하는 비교 영역 학습 기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 $93\%$ 이상의 높은 정확도를 보였다.

  • PDF

동적 사용자 모델을 이용한 개인화된 문맥광고 (Personalized Contextual Advertisement Using a Dynamic User Model)

  • 강영길;김성민;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.189-193
    • /
    • 2006
  • 문맥광고 또는 컨텍스트 기반 광고란 사용자들이 선택한 웹 콘텐츠 내용을 기반으로 하여 연관성 있는 광고를 자동으로 선택하여 사용자에게 제공하는 광고기법이다. 즉, 웹 사이트를 방문하는 고객을 타겟으로 하여 그들이 찾고자 하는 것과 관련된 광고를 내보냄으로써 효과적인 광고가 이루어지도록 하는 것이다. 그러나 기존의 문맥광고는 사용자가 관심을 가지는 키워드가 아닌 광고주가 선택한 키워드를 중심으로 광고 내용을 선택하기 때문에 사용자의 실제적인 관심이 반영되지 않아 광고의 효과가 떨어지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자가 웹 콘텐츠를 선택할 때 마다 사용자의 선호도를 동적으로 학습하고, 학습된 선호도를 문맥광고에 활용하는 개인화된 문맥광고를 제안한다. 실험을 위해서 제안한 방법으로 광고를 생성해서 보여주는 웹 브라우저를 구현하여 기존의 문맥광고와 개인화된 문맥광고에 대한 사용자의 평가를 비교하였다. 실험 결과 본 논문에서 제안한 개인화된 문맥광고가 ‘콘텐츠의 내용과의 연관성’, ‘사용자의 클릭여부’ 등의 항목에서 기존의 문맥광고에 비해 우수하다는 결과를 얻을 수 있었다.

  • PDF

효율적인 키워드 검색을 지원하는 학습자료의 구조화 방법 연구 (A Study on Structuring Method of Study Data Supporting Efficient Keyword Search)

  • 김은경;최진오
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1063-1066
    • /
    • 2005
  • 다양한 학습 자료를 저장해두고 검색하는 시스템들은 주로 키워드 검색을 지원하고 있다. 여기서, 키워드 매칭 방식은 같은 분야의 자료라 하더라도 사용자가 입력한 키워드와 정확한 매칭이 되지 않을 경우 검색되지 못하는 문제점을 안고 있다. 또한 학습 테스트를 위한 학습 문제 자료는 키워드로 검색하기에는 포함한 정보의 양이 너무 적어 적용되기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위하여 학습문서를 입력할 때 문서에 포함되어 있는 각 단어들을 형태소 분석에 의하여 중요 명사들을 추출하고 데이터베이스화하는 기법을 도입하고 미리 마련한 유사한 용어 지식 데이터베이스를 활용하여 지능적이고 효율적인 학습자료 검색 기법을 제안한다.

  • PDF