• Title/Summary/Keyword: 사용자 재료 서브루틴

Search Result 14, Processing Time 0.021 seconds

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model (Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect (폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안)

  • Lee, Jeong-Ho;Park, Seong-Bo;Kim, Seul-Kee;Bang, Chang-Seon;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model (점소성 손상모델 기반 담수빙 재료거동 및 파손 예측)

  • Choi, Hye-Yeon;Lee, Chi-Seung;Lee, Jong-Won;Ahn, Jae-Woo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In the present study, a unified viscoplastic-damage model has been applied in order to describe the mechanical characteristics of fresh water ice such as nonlinear material behavior and volume fraction. The strain softening phenomenon of fresh water ice under quasi-static compressive loading has been evaluated based on unified viscoplastic model. The material degradation such as growth of slip/fraction has quite close relation with material inside damage. The volume fraction phenomenon of fresh water ice has been identified based on volume fraction (nucleation and growth of damage) model. The viscoplastic-damage model has been transformed to the fully implicit formulation and the discretized formulation has been implemented to ABAQUS user defined subroutine (User MATerial: UMAT) for the benefit of application of commercial finite element program. The proposed computational analysis method has been compared to uni-axial compression test of fresh water ice in order to validate the compatibilities, clarities and usefulness.