• 제목/요약/키워드: 사용자 리뷰 분류

검색결과 46건 처리시간 0.032초

통합 리뷰 감정 분석을 통한 맞춤형 도서 비교 및 평가 시스템 설계 (A Design of a System for Customized Comparison and Evaluation of Books Using Integrated Review Emotion Words Analysis)

  • 유다빈;유혜진;김나라;김윤희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.108-111
    • /
    • 2015
  • 아직까지도 도서 구매자의 대다수는 도서를 구매할 시 오프라인 서점을 이용하며, 외부 의견은 도서 구매 결정에 커다란 영향을 마치는 것으로 나타났다. 이에 따라 대표적 외부 의견인 도서의 리뷰를 가공 분석하여 제공하는 모바일 기반의 시스템의 필요성이 대두되었다. 하지만 현재 마켓에 등록된 애플리케이션의 대다수는 도서에 대한 사용자의 리뷰를 제공하지 않거나 분류 분석되지 않은 상태의 리뷰를 제공한다. 따라서 본 논문에서는 각 도서의 리뷰를 수집하여 리뷰의 긍정 부정적 감정 추이를 분석하고 그 결과를 리뷰 핵심어에 따라 분류된 도서 평가 기준 별로 제공하며 이를 통해 사용자의 도서 구매 결정과 여러 도서간의 도서 선택에 도움을 줄 수 있는 모바일 애플리케이션을 설계하였다.

사전기반의 한국어 상품 리뷰 의견표현 자질 추출 및 분류시스템 (Dictionary-Based Opinion Features Extraction and Classification of Korean Product Reviews)

  • 육상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.631-634
    • /
    • 2008
  • 인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.

단어 임베딩 및 벡터 유사도 기반 게임 리뷰 자동 분류 시스템 개발 (Development of An Automatic Classification System for Game Reviews Based on Word Embedding and Vector Similarity)

  • 양유정;이보현;김진실;이기용
    • 한국전자거래학회지
    • /
    • 제24권2호
    • /
    • pp.1-14
    • /
    • 2019
  • 게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.

리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석 (Multimodal Sentiment Analysis Using Review Data and Product Information)

  • 황호현;이경찬;유진이;이영훈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.15-28
    • /
    • 2022
  • 최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.

딥러닝을 활용한 모바일 어플리케이션 리뷰 분류에 관한 연구 (A Study on Classification of Mobile Application Reviews Using Deep Learning)

  • 손재익;노미진;타지주르 라만;표규진;한무명초;김양석
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.76-83
    • /
    • 2021
  • 스마트폰과 태블릿과 같은 스마트 기기의 발달과 사용이 증가함에 따라, 모바일 기기를 기반으로 한 모바일 어플리케이션 시장이 급속도로 커지고 있다. 모바일 어플리케이션 사용자는 어플리케이션을 사용 경험을 공유하고자 리뷰를 남기는데, 이를 분석하면 소비자들의 다양한 니즈를 파악할 수 있고 어플리케이션 개발자들은 소비자들이 작성한 리뷰를 통해 애플리케이션의 개선을 위한 유용한 피드백을 받을 수 있다. 그러나 소비자들의 남기는 많은 양의 리뷰를 수작업으로 분석하기 위해서는 많은 시간과 비용을 지불해야하기 때문에 이를 최소화 할 방안을 마련할 필요성이 존재한다. 이에 본 연구에서는 구글 플레이스토어(Google PlayStore)의 배달 어플리케이션 사용자 리뷰를 수집한 후 머신러닝과 딥러닝 기법을 활용하여 어플리케이션 기능 장점, 단점, 기능 개선 요청, 버그 보고의 4가지 범주로 분류하는 방법을 제안한다. 연구 결과, Hugging Face의 pretrain된 BERT기반 Transformer모델의 성능의 경우 위의 4개의 범주에 대한 f1 score값은 차례대로 0.93, 0.51, 0.76, 0.83으로 LSTM, GRU보다 뛰어난 성능을 보인 것을 확인할 수 있었다.

딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발 (Design and implementation of a satisfaction and category classifier for game reviews based on deep learning)

  • 양유정;이보현;김진실;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가 (A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance)

  • 이성운;김성순;박동현;강재우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.338-343
    • /
    • 2016
  • 웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.

감성분석 기반 호텔 리뷰의 특성별 극성 분석 및 유저의 선호도 반영 시스템 (Aspect Based Sentiment Analysis System of Hotel Review, Reflecting User's Preference)

  • 심하영;오수진;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.281-284
    • /
    • 2018
  • 인터넷을 통해 정보를 쉽게 공유하게 되면서 소비자는 제품이나 서비스를 이용하기 전 효율적인 의사 결정을 위해 먼저 작성된 다른 사람의 의견을 참고한다. 또한 기업은 이러한 소비자의 의견을 수집하여 제품의 피드백이나 마케팅 등 비즈니스적인 측면으로 활용한다. 수많은 상품평과 후기에서 특정 제품 또는 서비스에 대한 감성을 식별할 수 있다는 점에서, 감성분석은 소비자와 기업 모두에게 주목받고 있는 기술이다. 합리적인 결정을 위해, 소비자는 해당 웹사이트에서 제공하는 데이터를 참고하며, 이 데이터는 웹사이트마다의 기준에 따라 필터링된다. 하지만 제품/서비스에 따라 개인이 중시하는 부분이 다르기 때문에, 실질적으로는 다른 사용자의 의견을 참고하여 합리적인 결정을 내린다. 본 논문은 호텔의 리뷰를 여덟 가지 특성으로 구분하고, 각 특성별로 극성을 분석한다. 또한 사용자가 선호하는 특성에 가중치를 부여하여 순위를 나타내는 시스템을 제안한다. 극성분석 단계에서는 주어진 리뷰를 여덟 가지 특성으로 분류하고, 긍정/부정의 극성으로 분류하는 기계학습 알고리즘을 사용한다. 각각의 특성에 대해 가중치를 적용하여 얻을 수 있는 순서는 기존에 제공되는 순서보다 사용자의 선호도를 정확히 반영한다, 또한 본 논문의 제안을 호텔뿐만 아니라 다양한 제품/서비스에 적용하여 선호도를 반영한 순위 정보를 제공한다면 소비자의 합리적인 의사 결정에 도움을 줄 것이다.

머신러닝을 활용한 가짜리뷰 탐지 연구: 사용자 행동 분석을 중심으로 (A Study on Detecting Fake Reviews Using Machine Learning: Focusing on User Behavior Analysis)

  • 이민철;윤현식
    • 지식경영연구
    • /
    • 제21권3호
    • /
    • pp.177-195
    • /
    • 2020
  • 소비자 구전은 정보통신기술의 발전과 모바일 기기의 보급 가속화로 그 영향력 또한 급속도로 커지고 있다. 그러나 과도한 마케팅 경쟁은 가짜리뷰와 같은 거짓 온라인 구전을 확산시켰고, 이로 인해 소비자들은 온라인 구전에 대한 피로감과 함께 온라인을 통해 얻게 되는 정보를 불신하는 결과를 초래하고 있으며, 이는 소비자의 합리적 구매 결정 행위에 부정적인 영향을 미치기도 한다. 이에 대한 문제 인식의 확산으로 가짜리뷰의 형태적 특성에 대한 연구를 비롯해 가짜리뷰를 효과적으로 분류하기 위한 다양한 탐지 방법에 대한 연구가 증가하고 있다. 이에 본 연구에서는 네이버 블로그에 작성된 포스트를 대상으로 데이터를 수집하고, 사용자의 무의식에 기반한 습관적 패턴을 머신러닝 모형을 통해 분석해 보았다. 게시물이 작성된 블로그와 그 게시물에서 추출한 변수를 분석하여 향후 가짜리뷰 예측에 활용하고자 하였다. 연구 결과, 광고성 리뷰 예측에 있어 해당 글 작성자의 블로그에 등록된 전체 포스트의 개수와 포스트의 등록 날짜는 매우 높은 상관관계를 보였으며, 해당 포스트가 속한 분류에 등록된 포스트의 개수, 포스트 본문에 사용된 이미지의 개수, 블로그에 포함된 메뉴 개수, 포스트 제목 및 본문의 길이, 포스트가 획득한 '좋아요'의 개수 또한 높은 상관관계를 보였다. 또한 광고성 리뷰 여부를 판단하기 위한 머신러닝 모형에 있어서 랜덤포레스트를 활용한 모형이 가장 우수한 모형으로 확인되었다. 본 연구에서는 블로그에 작성된 리뷰 내용에 대한 형태소 분석을 시행하는 대신 리뷰를 작성한 사람의 행위를 분석하기 위한 시도를 하였다. 이를 위해 블로그와 포스트의 특성 데이터를 수작업이 아닌 웹 크롤링 기법으로 수집하고 머신러닝 모형을 통해 광고성 리뷰 여부를 판별할 가능성을 확인한 점은 향후 가짜리뷰의 빠른 탐지를 위한 효율성 및 효과성 향상에 기여할 수 있을 것이다.

지역화폐 앱 사용자 리뷰 분석을 통한 마케팅 전략 수립 - '동백전'과 '인천e음'을 중심으로 (Establish Marketing Strategy Using Analysis of Local Currency App User Reviews -Focused on 'Dongbackjeon' and 'Incheoneum')

  • 이새미;이태원
    • 한국콘텐츠학회논문지
    • /
    • 제21권4호
    • /
    • pp.111-122
    • /
    • 2021
  • 본 연구는 우리나라 대표적인 지역화폐인 동백전과 인천e음 앱 사용자 리뷰를 분석하여 지역화폐 사용자의 긍정/부정 요인을 파악하고, 이를 바탕으로 마케팅 전략을 수립하였다. 앱 사용자 리뷰를 별점을 기준으로 하여 긍정과 부정으로 분류하고 각각 워드클라우드, 토픽모델링, 소셜 네트워크 분석을 수행하였다. 그 결과, 동백전과 인천e음 부정 리뷰에서는 공통적으로 앱 사용과 카드 발급에 대한 불만이 주로 나타났으며, 긍정 리뷰에서는 '캐시백'에 대한 만족감과 함께 '지역경제'와 '소상공인'과 같은 키워드의 출현으로 지역화폐 사용자들은 자신의 소비가 지역경제 활성화에 도움이 된다고 인식하여 지역화폐를 사용하는 데 있어 만족감을 느끼는 것으로 나타났다. 본 연구의 분석결과로 파악된 만족/불만족 요인을 기반으로 개선해야 할 점과 더욱 강화해야 할 점을 파악하고, 이에 적절한 마케팅 전략을 도출하였다. 본 연구에서 활용한 텍스트 마이닝 방법과 연구 결과는 실질적으로 지역화폐 담당 공무원들과 마케터들에게 지역화폐에 대한 유의미한 정보를 제공해 줄 수 있다.