◈기존 방법론의 문제점 사용자 인터페이스 디자인의 중요성 과소평가 사용자 인터페이스 디자인 요구 반영 부족 개발팀과 사용자 인터페이스 디자인팀의 독립적인 작업의 어려움 사용자 인터페이스 디자인 변경 요청에 대한 유연한 대처가 어려움 사용자 인터페이스 디자인 유지보수 비용 과다(중략)
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.541-543
/
2004
인터넷의 대중화로 인하여 인터넷상에 많은 음악 정보가 존재하게 되었다. 이에 따라서 사용자에게 음악 정보를 손쉽게 접근할 수 있게 해주는 서비스뿐만 아니라, 사용자에게 적절한 음악을 추천해주는 서비스의 중요성도 증가하고 있다. 본 논문에서는 사용자의 상황을 인식하고 사용자와의 대화를 통해서 적절한 음악을 추천해주는 인공 DJ를 제안한다 인공 DJ는 센서로부터 실내 온도, 습도, 조도, 소음을 입력받고, 인터넷을 통하여 날씨 정보를 입력받고, 사용자의 감정추론을 위하여 사용자가 입력하는 문장을 분석하여 Activation-Evaluation Space상에서 사용자의 감정을 표시함으로써 사용자의 주변 상황을 인식하고, 사용자의 성향을 파악하여 IF-THEN 규칙을 만들어 대수학적 연산자(algebraic operator)를 통한 퍼지 추론 방법을 이용하여 적절한 음악을 추천한다. 피험자 10명을 대상으로 실시한 설문조사 결과 제안하는 방법이 유용함을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.75-77
/
1999
정보추천 시스템은 사용자가 어떤 정보를 선호하는지를 식별함으로써 산재한 정보 중에서 적절한 정보만을 제공하는 것을 목표로 한다. 이러한 정보추천 시스템에서 사용되는 정보여과 기술에는 내용기반 여과와 협력적 여과가 있다. 기존의 협력적 정보여과 기술은 선호도를 적게 제시한 사용자에게 정보를 추천하기 어렵고, 동일한 상품 정보에 대해서 사용자의 평가가 없을 경우 사용자간의 유사성을 판단하기 어려운 단점이 있다. 본 논문은 SVD (Singular Value Decomposition)를 통해 사용자 프로파일을 정량화함으로써 사용자 선호도 행렬로부터 숨어있는 의미정보를 추출하여 동일한 정보에 대해 선호도를 평가해야 한다는 단점을 극복한다. 이때, 사용자 프로파일 벡터를 비감독 학습 알고리즘인 SOM (Self0Organizing Map)으로 클러스터링하여 사용자를 분류하고, 정보추천은 사용자 그룹간에서 이루어지며 Pearson correlation 알고리즘을 이용한다. 기존의 방법과 비교한 결과, 제안한 방법이 새로운 사용자에 대해서도 적절한 정보를 추천할 수 있음을 볼 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.140-142
/
1999
본 논문에서 구현하고자 하는 에이전트기반 전자도서관 시스템은 웹을 통해 도서정보를 검색하는 사용자들에 대한 도서 정보 관심도를 모니터 에이전트에 의해 추출하게 하고 해당 정보를 대상으로 학습 과정을 거쳐 사용자별 프로파일을 구축할 수 있게 한다. 이 과정에서 모니터 에이전트에서 추출되는 사용자 history와 학습예제 정보는 사용자가 행하는 다양한 작업의 결과 차별화된 중요도가 적용된다. 학습 에이전트를 통해 구축된 사용자 관심 정보는 각 사용자에게 세부 DB 추천 모듈과 관심 정보를 푸쉬해주는 에이전트에 적용된다. 본 시스템에서는 전자 도서관에 가입하는 사용자들의 공통된 그룹 정보를 관리하여 이를 통해 동일 그루내의 사용자들 사이의 정보 이용이 가능하게 하였다. 본 논문에서는 개인과 그룹을 대상으로 하는 모니터 에이전트와 학습 에이전트를 설정하여 도서관을 이용하는 사용자들에게 정확하고 신속한 정보를 제공하는 것을 목적으로 한다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.113-115
/
1999
인터넷에서 제공하는 각종 서비스 및 다양한 소프트웨어들은 점차 사용자를 고려하여 개발되고 있는 추세이나 아직은 미약하다. 사용자를 고려한다는 것은 사용자가 소프트웨어를 사용하거나 서비스를 받으면서 공감을 느끼도록 하여 사용 효과를 높이고, 생활의 일부분이 되어 가고 있는 컴퓨터 시스템을 사람과 친하게 만들려는 것이다. 이를 위해서는 사용자와의 상호작용이 중요시된다. 본 연구에서는 사람과 비슷한 가상의 캐릭터를 이용하며, 이 캐릭터가 사용자와 상호 작용을 통하여 emotion을 갖게 하는데 중점을 두었다. 즉, 캐릭터가 가질 수 있는 emotion structure를 정의하고 사용자와의 상호작용을 바탕으로 캐릭터의 emotion을 생성한다. 이를 위한 시스템은 사용자가 에이전트에게 task를 요청하여 서비스를 받을 때까지 일어날 수 있는 여러 상호작용에 대하여 캐릭터의 emotion을 생성하여 사용자에게 simulation하게 된다. 이러한 감정의 교류를 통하여 사용자는 캐릭터에게 친근감을 갖게 되며 캐릭터의 emotion에 대하여 공감할 수 있고 응용프로그램의 신뢰성을 높이는 효과를 가져온다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.72-74
/
1999
본 논문은 웹 기반의 정보 여과 시스템인 WAIR을 이용하여 사용자의 기호를 학습하는 방법을 설명한다. 제시된 방법은 여과된 문서들에 대한 사용자의 반응을 관찰하여 각 개인 사용자의 프로파일을 학습한다. 사용자의 기호를 가장 잘 표현하는 단어들을 찾는데 강화 학습을 사용하였다. 기존의 방법은 사용자의 명시적인 적합성 평가(relevance feedback)를 이용하여 검색 또는 여과 성능을 향상시킨 반면 제시된 방법은 사용자의 기호를 묵시적 적합성 평가를 통해 학습한다. 여과된 문서에 대한 사용자의 행동을 통해 사용자의 명시적 평가를 추측하는 것이다. 약 7,000 여개의 HTML 문서에 대해 7명의 사용자가 약 4주 동안 실제 웹을 대상으로 웹 문서 여과 실험을 실시하였다. 제시된 방법은 기존의 적합성 평가를 이용한 정보 여과 방법보다 각 개인에게 보다 적절한 정보를 제시하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.263-266
/
2005
현재 유비쿼터스 환경에서 대부분의 시스템이 개인화된 추천 서비스를 위한 컨텍스트 인식 과정에서 사용자의 직접 피드백을 받는 경우가 많다. 다양한 서비스가 사용자 주변에 존재한다고 하더라도 사용자가 서비스를 받기 위해 직접 피드백을 하는 경우가 많아지면 invisible service를 받을 수 없게 된다. 본 논문에서는 마이닝 기법을 기반으로 사용자의 프로파일 생성과 갱신, 선호도를 예측하여 효율적인 서비스를 제공하는 컨텍스트 마이닝 시스템을 제안한다. 본 시스템에서는 초기프로파일을 생성할 때만 사용자의 직접 피드백을 이용하고, 사용자 프로파일의 갱신과 선호도 예측, 추천 둥 컨텍스트 마이닝 과정에서는 사용자의 행동과 사용자와 유사한 그룹의 선호도, 그리고 사용자의 주변 환경과 같은 컨텍스트 정보를 이용하여 직접 피드백을 최소화한다.
전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.481-483
/
2003
사용자의 성향을 분석하여 그 결과를 이용하는 기업 활동은 매우 유용하고 효과적이다. 이미 분석된 사용자의 성향에 대한 이용 분야는 매우 다양하다. 그 중에서 사용자와 기업 간의 상호 작용이 많은 부분이 광고 분야이다. 사용자의 성향을 알고 있고 그 사용자에게 광고를 하였을 때 광고 효과를 최상으로 이끌어 낼 수 있다. 기업은 광고비를 지출하면서 그것이 최상의 효과를 가지기를 원한다. 사용자는 자신이 원하지 않는 광고는 바로 폐기 한다. 이러한 두 가지의 딜레마에서 양쪽의 집단을 동시에 만족시킬 수 있는 기법이 본 논문에서 제안하고 실험한 사용자 분석을 통한 광고 시스템이다. 이러한 시스템을 위해서 사용자의 성향을 찾아내기 위한 데이터의 집합에서 법칙을 적용하여 사용자의 성향에 맞게 분류한다. 그 지정한 분류 안에서 광고를 광고비를 기반으로 한 결정 방법을 적용하여 가장 공평한 광고가 나가게 시스템을 구성하고 실험하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.88-90
/
2001
정보여과 에이전트는 자체의 적응성(adaptability)과 자율성(autonomy)을 특징으로 사용자의 선호도와 관심을 학습하여 사용자 프로파일을 지식베이스의 일부로 구축하는 기능을 수행한다. 이러한 사용자 프로파일은 사용자의 학습의도에 맞게 지식을 탐색하고 축적하는 적응성(adaptability)을 가져야 한다. 본 논문에서는 지능적 정보여과 에이전트가 사용자의 선호도와 관심을 학습하여 적응적인 사용자 프로파일을 구축하기 위한 기법으로서, 사용자가 제시한 학습예제로써의 웹 문서들로부터 사용자의 학습의도를 내포한 질의어를 중심으로 연관 지식을 탐색하여 추출하는 웹 도큐먼트 기반 사용자 중심 연된 객체 추출과 만유인력 모델을 기반으로 한 연관 객체 관계성 가중치 기법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.