• Title/Summary/Keyword: 사면체 기하학

Search Result 3, Processing Time 0.018 seconds

A Study on the Forward Kinematic Analysis of a Casing Oscillator (케이싱오실레이터의 순기구학 해석)

  • 백재호;신진오;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.237-240
    • /
    • 1997
  • The casing oscillator is a construction equipment to clamp, oscillate and push a casing for foundation work. In case that the casing oscillator is operated on the slant ground, if another construction heavy equipment is not used, it is impossible to insert the casing in ground using only casing oscillator. So in this paper, we present the new casing oscillator that need not to level the ground for work of casing insertion. This mechanism can execute 4 DOF motion by actuating 5 single - rod hydraulic cylinders. The forward kinematics analysis of the casrng oscillator by tetrahedron geometry is performed so predict workspace, direction and poison of casing oscillatoer.

  • PDF

Extracting Three-Dimensional Geometric Information of Roads from Integrated Multi-sensor Data using Ground Vehicle Borne System (지상 이동체 기반의 다중 센서 통합 데이터를 활용한 도로의 3차원 기하정보 추출에 관한 연구)

  • Kim, Moon-Gie;Sung, Jung-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.68-79
    • /
    • 2008
  • Ground vehicle borne system which is named RoSSAV(Road Safety Survey and Analysis Vehicle) developed in KICT(Korea Institute of Construction Technology) can collect road geometric data. This system therefore is able to evaluate the road safety and analyze road deficient sections using data collected along the roads. The purpose of this study is to extract road geometric data for 3D road modeling in dangerous road section and The system should be able to quickly provide more accurate data. Various sensors(circular laser scanner, GPS, INS, CCD camera and DMI) are installed in moving object and collect road environment data. Finally, We extract 3d road geometry(center, boundary), road facility and slope using integrated multi-sensor data.

  • PDF

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.