• Title/Summary/Keyword: 사례 기반

Search Result 6,728, Processing Time 0.029 seconds

자료편집기법과 사례기반추론을 이용한 한국종합주가지수 예측 (Prediction of KOSPI using Data Editing Techniques and Case-based Reasoning)

  • 김경재
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.287-295
    • /
    • 2007
  • 본 연구에서는 한국종합주가지수 (KOSPI)의 예측을 위하여 사례기반추론에서의 유전자 알고리즘을 이용한 새로운 자료편집기법을 제안한다. 사례기반추론은 복잡한 문제 해결에서의 편의성과 강점으로 인하여 여러 분야에서 광범위하게 활용되고 있다. 그럼에도 불구하고 사례기반추론은 다른 기계학습기법에 비하여 낮은 예측정확도를 나타내기에 비판을 받아 왔다. 일반적으로 사례기반추론으로부터 성공적인 성과를 도출하기 위해서는 주어진 문제에 유용한 선행 사례를 효과적으로 추출하는 것이 핵심이다. 그러나 사례기반추론 시스템에서 우수한 대응과 추출방법을 설계하는 것은 여전히 논란이 있는 연구 주제이다. 본 연구에서는 사례기반추론 시스템에서 우수한 대응과 추출을 위하여 유전자 알고리즘이 동시에 속성 가중치와 적합한 사례를 선택하는 것을 최적화한다. 본 연구에서는 제안된 모형을 주식시장분석에 응용한다. 실험결과는 유전자 알고리즘 접근법이 사례기반추론에서 유망한 사례편집기법이라는 것을 보여준다.

  • PDF

사례기반 추론에서 사례별 속성 가중치 부여 방법 (A Case-Specific Feature Weighting Method in Case-Based Reasoning)

  • 이재식;전용준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

진단 시스템을 위한 혼합형 추론 엔진 (Hybridlnference Engine for System Diagnosis)

  • 김진평;이길재;김문현
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2005년도 춘계학술대회
    • /
    • pp.171-176
    • /
    • 2005
  • 본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.

  • PDF

상황과 정보 집적도를 고려한 유사도 기반의 맞춤형 지식 생성프레임워크 (Customized Knowledge Creation Framework using Context- and intensity-based Similarity)

  • 손미애;이현정
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.113-125
    • /
    • 2011
  • 정보의 출처와 형식이 다양해지고 정보의 양 또한 많아짐에 따라 소셜 웹에서의 맞춤형 지식 생성은 더욱 어려워지고 있다. RSS(Really Simple Syndication)가 정보 수집 방법의 개선에 일조했으나, 웹에 산재된 정보를 찾아 필요한 정보들만으로 구성된 맞춤형 지식을 생성하는 것은 여전히 사용자들의 몫으로 남아 있다. 본 논문에서는 맞춤형 지식 생성의 용이성을 제고하기 위해 상황 기반 유사도를 이용한 맞춤형 지식생성 프레임워크를 제안하였다. 본 프레임워크는 기본적으로 사례 기반추론의 절차를 따르지만, 기존 사례 기반의 유사도 계산 방식이 문법적 추론에 기반했던 것과 달리, 온톨로지를 활용한 의미적 유사도를 이용한 사례 기반 추론을 활용한다. 또한 사용자 요구를 만족하는 유사사례의 보정을 위해 온톨로지를 활용한 정보 집적도 기반의 유사도 방법론을 제안하였다. 본 프레임워크에서는 첫째 비구조적인 웹 정보를 사례 형태의 구조적 정보로 변환하고, 둘째 사용자의 요구에 적합한 의미론적 유사사례를 찾은 후 셋째, 선택된 유사사례의 정보 집적도를 고려한 보정을 통해 맞춤형 지식을 생성하는 과정을 거친다. 본 논문에서는 유사도 계산에 일반적으로 활용되는 여러 방법론들과 비교를 통하여 제안한 온톨로지 기반 의미적 유사도 계산 방법론의 타당성을 입증하였다.

피지 클러스터링을 이용한 사례기반 추론의 성능 개선 (Performance Improvement of Case-based Reasoning Using Fuzzy Clustering)

  • 현우석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.100-103
    • /
    • 2002
  • 사례 기반 추론(case-based reasoning)은 과거에 유사하게 수행된 적이 있는 사레를 유추하고, 유추된 사례의 해를 이용하여 현재의 문계를 해결하는 기법으로서 규칙 기반 추론과 함께 여러 분야에 이용되고 있다. 하지만 사례기반 추론시 사레베이스로부터의 유사성에 근거한 검색을 해야 하므로 사례베이스의 크기가 증가하게 되면 검색시간이 길어지게 되거나 적절하지 못한 사레가 조회될 수 있다 특히 사레베이스 내의 모든 사례에 대하여 유사도를 계산하게 되기 때문에 수행속도가 현저히 저하되는 문제점을 지니고 있다. 본 논문에서는 규칙 및 퍼지 클러스터링에 의한 사레기반추론을 이용한 E-FFIS(Enhanced-Fire Fighting Intelligent System)를 제안한다. 제안하는 시스템은 기존의 H-FFIS(Hybrid-Fire fighting Intelligent System)와 비교해 보았을 때 수행시간을 감소시키면서 정확성을 높이게 되었다.

  • PDF

사례 기반의 최적화 모형 생성 (Case-based Optimization Modeling)

  • 장용식;이재규
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.51-69
    • /
    • 2002
  • 웹상의 공급망 환경에서는, 의사결정을 위해 협동적 문제 해결과 사례 기반의 자동 모형화가 더욱 중요시 되고있다. 왜냐하면, 문제요구는 다양하고 이에 대응하기 위해 모든 모형을 준비한다는 것은 실제로 어려우며, 모형의 저장 및 관리 관점에서도 비효율적이기 때문이다. 따라서, 사례 기반의 모형 자동 생성에 의한 문제 해결 접근에 관한 연구 필요성이 인식되고 있다. 본 연구에서는 최적화 모형에 대한 지식이 부족한 사용자 수준의 XML 표현과 같은 문제요구 해석하여 최적화 모형 사례로부터 사례 기반의 최적화 모형을 자동 생성하는 프레임웍, 모형화 지식의 표현과 목표모형 탐색을 위한 전방향 추론 절차, 그리고 모형화 노력을 줄이기 위해서, 민감도 분석을 통해 성능이 평가된 탐색 알고리즘을 제시한다.

  • PDF

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • 이재식;이진천
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

대용량 데이터를 위한 사례기반 추론기법의 실시간 처리속도 개선방안에 대한 연구: 심장병 예측을 중심으로 (A Case-Based Reasoning Method Improving Real-Time Computational Performances: Application to Diagnose for Heart Disease)

  • 박윤주
    • 경영정보학연구
    • /
    • 제16권1호
    • /
    • pp.37-50
    • /
    • 2014
  • 사례기반 추론기법(case-based reasoning)은 수많은 데이터 속에서 현재 문제와 유사한 과거데이터를 실시간으로 탐색하고 복원해내야 하기 때문에, 과거에 축적된 데이터의 양이 방대하거나 또는 데이터의 축적 속도가 빠를 경우 계산비용(computational cost)이 급격히 높아지는 확장성(scalability) 문제를 갖는다. 이러한 문제를 해결하기 위하여, 기존의 일부 연구들은 클러스터링(clustering) 기법을 적용하여, 전체 데이타를 사전에 몇 개의 그룹으로 분류한 후, 특정 클러스터 내에서만 과거 사례를 탐색하도록 하는 클러스터링과 사례기반 추론의 하이브리드 기법을 제안하였다. 그러나 이러한 기법은 클러스터 수를 얼마로 설정했는지에 따른 성능편차가 심하고, 또한 기본적인 사례기반 추론기법에 비해 일반적으로 낮은 예측성능을 도출하는 문제점이 있다. 본 연구는 이러한 기존의 클러스터-사례기반추론기법의 문제점을 실증적으로 분석하고, 이를 극복할 수 있는 새로운 하이브리드(hybrid) 사례기반 추론기법을 제안한다. 제안된 기법은 실제 심장병환자를 예측하는 문제에 적용하였으며, 그 결과 제안된 기법이 기존의 사례기반 추론기법에 비해 현격하게 낮은 계산비용을 사용하면서도, 유사한 수준의 예측성능을 도출할 수 있음을 확인하였다.

선박에서 퍼지 데이터베이스를 이용한 지능형 화재진압통제시스템의 성능 개선 (Performance Improvement of Intelligent Firefignting Control System for a Ship using Fuzzy Database)

  • 현우석;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.340-343
    • /
    • 2000
  • 본 논문에서는 선박에서 퍼지 데이터베이스를 이용하여 지능형 화재진압통제시스템의 성능을 개선시키는 방법에 대하여 논의하였다. 규칙과 사례가 통합된 화재진압통제 전문가시스템(C-FFES)에서는 사례기반 추론을 하기 위한 사례베이스가 일반적인 데이터베이스로 구성되어 있어서, 이전에 화재가 발생했던 사례와 현재의 사례가 유사한지를 구별하기가 쉽지 않은 문제점을 지니고 있다. 제안하는 시스템에서는 예외적인 상황에서 화재가 발생하는 사례를 퍼지데이터베이스로 구성하고, 현 상황과 예외적인 상황에서 화재가 발생하는 사례를 조회하기 위하여 퍼지 유사도 개념을 적용하여 현재 입력된 사례와 가장 유사한 사례가 조회될 수 있도록 하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System), 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System) 그리고 제안하는 A-FFES(Advanced Fire fighting Expert System)를 비교를 통해, 제안하는 A-FFES가 화재탐지율을 향상시킴을 보였다.

  • PDF

클라우드 컴퓨팅 기반 융.복합형 서비스 사례 연구 (A Case Study on Convergence Service based on Cloud Computing)

  • 서광규;김원기;조경국;윤수진
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.105-112
    • /
    • 2012
  • 클라우드 서비스는 사용자가 인터넷 접속만으로 언제 어디서나 데이터, 네트워크, 콘텐츠 등의 사용이 가능한 서비스이다. 공공부문과 선진기업의 클라우드 서비스 도입이 증가하면서 관련 서비스가 급속히 확대되고 있고, 향후 시장규모가 급성장 할 것으로 전망된다. 특히 클라우드 서비스는 다양한 산업 도메인에 적용되어 새로운 융 복합 서비스가 나타나고 있는데, 본 연구에서는 다양한 클라우드 기반의 융 복합 서비스의 사례를 살펴본다. 본 연구에서는 다양한 클라우드 기반의 융 복합 서비스의 사례 분석을 위한 산업군을 분류하여 클라우드 기반의 융복합 서비스의 사례 연구를 수행하였다. 사례 연구를 통하여 클라우드 기반 융 복합 서비스의 활용 방안과 융 복합 서비스의 사례를 통한 시사점 및 발전전략을 제시하였다. 궁극적으로 클라우드 기반의 융 복합 서비스를 활성화하기 위해서는 클라우드 기술과 서비스에 관한 표준화 및 법제도정비를 조속히 추진하여야 하며 관련 서비스를 활성화할 수 있는 생태계 기반 조성이 필요하며 ICT산업은 물론 다양한 산업군이 참여하므로 생태계 구성원간의 윈-윈 할 수 있는 서비스 비즈니스 모델 발굴을 통한 선순환 구조의 조기형성이 중요함을 도출하였다.

  • PDF