• 제목/요약/키워드: 사기 탐지

검색결과 47건 처리시간 0.02초

온라인 게임 결제 데이터 분석 기반의 이상거래 탐지 모델

  • 우지영;김하나;곽병일;김휘강
    • 정보보호학회지
    • /
    • 제26권3호
    • /
    • pp.38-44
    • /
    • 2016
  • 소액결제에 대한 규제 완화로 이와 관련한 사기가 급증하고 있으며, 특히 소액결제가 대부분을 차지하는 온라인게임 산업은 관련 사기로 인한 피해가 증가하고 있다. 온라인 게임의 소액결제 사기는 단순히 금액에 대한 피해뿐만이 아니라 회사 브랜드에도 영향을 미치며, 나아가 고객 이탈로 이어질 수 있다. 소액결제 사기를 방지하기 위해 게임 산업에서도 이상거래 탐지 시스템이 요구되고 있다. 본 연구는 게임 사용자의 결제 패턴을 분석하여 이상거래를 탐지할 수 있는 머신러닝 기반의 이상거래 탐지 모델을 제시하며, 제안하는 모델을 글로벌 온라인 게임에 적용한 사례를 소개한다.

토픽 모델링과 머신 러닝 방법을 이용한 온라인 C2C 중고거래 시장에서의 사기 탐지 연구 (A Study on the Fraud Detection in an Online Second-hand Market by Using Topic Modeling and Machine Learning)

  • 이동우;민진영
    • 경영정보학연구
    • /
    • 제23권4호
    • /
    • pp.45-67
    • /
    • 2021
  • 온라인 C2C 중고거래에 대한 수요가 증가하고 있으나 물품을 보내지 않거나 명시한 것과 다른 물건을 보내는 방식으로 부당한 금전적 이득을 챙기려는 사기 행위자들의 수도 증가하고 있다. 본 연구는 이러한 사기를 미연에 방지하기 위한 머신 러닝 방법을 이용한 사기 탐지 모델을 구축하였다. 이를 위해 대표적 C2C 중고거래 플랫폼인 중고나라에서 145,536건의 거래 게시글을 수집하였다. 이후 이들 게시글에서 토픽 모델링 기법을 이용하여 상품 설명 내용의 주제를 추출하였으며, 상품 설명의 언어적 특성, 준언어적 특성, 상품의 특성, 게시글의 포스팅 특성, 구매자 특성, 거래 특성들을 추출하였다. 이를 XGBoost 방법에 기반한 머신 러닝 모델을 구축하여 사기 게시글을 탐지하였다. 분석 결과, 사기 게시글은 글 자체의 길이가 대체로 짧고, 제공하는 정보가 적고 상대적으로 구체적이지 않은 것으로 나타났으며 명사를 상대적으로 적게 쓰고 이미지도 사용하지 않거나 적게 사용하는 글이 대부분인 것으로 나타났다. 또한 상대적으로 숫자와 공백의 비율이 높게 나타났으며 정상 게시글의 경우 명사의 경우 상품의 정보, 동사의 경우 전달, 형용사의 경우는 행위와 관련된 단어들이 사용되었으나 사기 게시글은 뚜렷한 주제를 가지지 못하는 것으로 나타났다. 본 연구는 전화번호나 계좌번호를 사용한 기존의 방법과 달리 다양한 게시글의 특성으로 사기 여부를 탐지하는 모델을 구축했다는 점에서 학술적, 실무적 시사점을 가지고 있다.

비정형 데이터를 이용한 ICO(Initial Coin Offering) 정량적 평가 방법에 대한 연구 (A Study on the Quantitative Evaluation of Initial Coin Offering (ICO) Using Unstructured Data)

  • 이한솔;안상호;강주영
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.63-74
    • /
    • 2022
  • 기업공개(IPO)는 투자자 보호를 위한 법적 테두리가 마련되어 있으며, 다양한 정량적 평가 요소가 존재하기 때문에 객관적인 분석이 가능하며 다양한 연구가 수행되어 왔다. 또한, 크라우드펀딩 역시 투자자 보호를 위한 법적 제도와 무분별한 펀딩을 방지하기 위한 여러 장치가 마련되어 있다. 반면에 최근 각광받는 블록체인 기반의 암호화폐 백서(ICO)는 투자자를 보호할 법적 수단과 기준이 모호하며 ICO를 객관적으로 평가하기 위한 정량적 평가 방법이 미흡한 상황이다. 따라서 본 연구는 ICO의 사기 여부를 탐지하기 위해 온라인상 공개된 ICO 백서를 수집하고 텍스트 임베딩 기법인 BERT에 기반한 ICO 사기 예측을 수행하였고 기존의 Random Forest 머신러닝 기법과 비교하여 정량적 방법으로 사기 탐지가 가능함을 보였다. 최종적으로 본 연구는 비정형 데이터에 기반하여 ICO의 사기 여부를 판단할 수 있는 정량적 접근 방법론의 활용 가능성을 제시함으로써 정량적 방법에 기초한 ICO 사기 탐지 연구에 기여할 수 있을 것으로 기대된다

개인별 유틸리티에 기반한 신용 대출 사기 탐지 (Detecting Credit Loan Fraud Based on Individual-Level Utility)

  • 최근호;김건우;서용무
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.79-95
    • /
    • 2012
  • 금융기관들에서 개발한 신용 대출 상품이 증가함에 따라 사기 거래의 수 또한 급속히 증가하고 있다. 따라서, 재정적 위험을 성공적으로 관리하기 위해 금융기관들은 대출 승인 심사를 강화하고 신용 대출 사기를 사전에 탐지할 수 있는 능력을 증대시켜 나가야 한다. 신용 대출 사기를 탐지하기 위한 분류 모델을 구축하는 과정에서 분류 결과에 따른 유틸리티(즉, 정분류에 따른 이익과 오분류에 따른 비용)는 분류의 정확도보다 더 중요하다. 본 연구는 개인별 유틸리티에 기반하여 신용 대출 사기를 탐지하기 위한 분류 모델을 구축하는 것을 목적으로 하였다. 다양한 실험을 통해, 본 연구에서 제시한 모델이 기회 유틸리티와 현금 흐름의 두 관점 모두에서 개인별 유틸리티에 기반하지 않은 모델보다 더 높은 유틸리티를 제공하며, 평균 유틸리티에 기반한 모델보다 더 정확한 유틸리티를 제공한다는 것을 보였다. 본 연구는 기회 유틸리티와 현금 흐름의 두 관점에서 얻어진 실험 결과를 다양한 측면에서 살펴보았다.

머신 러닝 접근 방식을 통한 가짜 채용 탐지 (Detecting Fake Job Recruitment with a Machine Learning Approach)

  • 일킨 타히예프;이재흥
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.36-41
    • /
    • 2023
  • 지원자 추적 시스템의 등장으로 온라인 채용이 활성화되면서 채용 사기가 심각한 문제로 대두되고 있다. 이 연구는 온라인 채용 환경에서 채용 사기를 탐지할 수 있는 신뢰할 수 있는 모델을 개발하여 비용 손실을 줄이고 개인 사생활 보호를 강화하고자 한다. 이 연구의 주요 기여는 데이터를 탐색적으로 분석하여 얻은 통찰력을 활용하여 어떤 채용 정보가 사기인지, 아니면 합법적인지를 구분할 수 있는 자동화된 방법론을 제공하는데 있다. 캐글에서 제공하는 채용 사기 데이터 집합인 EMSCAD를 사용하여 다양한 단일 분류기 및 앙상블 분류기 기반 머신러닝 모델을 훈련하고 평가하였으며, 그 결과로 앙상블 분류기인 랜덤 포레스트 분류기가 정확도 98.67%, F1 점수 0.81로 가장 좋은 결과를 보이는 것을 알 수 있었다.

전기통신금융사기 사고에 대한 이상징후 지능화(AI) 탐지 모델 연구 (Study on Intelligence (AI) Detection Model about Telecommunication Finance Fraud Accident)

  • 정의석;임종인
    • 정보보호학회논문지
    • /
    • 제29권1호
    • /
    • pp.149-164
    • /
    • 2019
  • Digital Transformation과 4차 산업혁명 등 변화의 시대에 급변하는 기술 변화에 맞게 전자금융서비스는 안전하게 제공하여야 한다. 그러나 전기통신금융사기(보이스피싱) 사고는 현재진행형 이어서 사고의 지속적 증가, 지능화 및 고도화 현상을 대응하려 법률 제 개정 및 정책 제도 개선등 사고 근절을 위해 다양한 노력을 기울이고 있다. 더불어 금융회사는 이상금융거래탐지 시스템 개선 및 고도화를 통한 전기통신금융사기 사고 방지에 노력하고 있으나, 그 대응 결과는 그리 밝지 않다. 이러한 노력에도 불구하고 전기통신금융사기 사고는 관련 대책에 맞서 변화하며 진화를 거듭하고 있다. 본 연구에서는 보이스피싱에 의한 금융거래 사고발생 방지를 위해 시나리오 기반의 Rule 모델과 인공지능 알고리즘을 통해 모델링 된 지능형 이상금융거래 시스템을 설계하고 금융기관의 전자금융거래 시스템 에 실제 설치 운용해 본 결과를 바탕으로 인공지능형 이상금융거래 탐지시스템의 구현 모델과 분석 탐지 결과를 차단 대응 할 수 있는 고도화 된 대응 모델을 제안하고자 한다.

가짜 앱 탐지 및 공식 앱 정보 공유 프레임워크 개발 (A Framework Development for Fake App Detection and Official App Information Sharing)

  • 김진욱;노유정;정원태;이경률
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.213-214
    • /
    • 2023
  • 스마트폰은 앱을 통하여 사람들에게 다양하고 유용한 기능을 제공하며, 새로운 앱들이 계속해서 개발되어 출시되고 있다. 그러나 이러한 긍정적인 측면에서 불구하고, 사람들의 편리한 사용에 대한 욕구를 이용하여, 신종 앱 사기와 같은 범죄가 발생하고 있으며, 이를 악용하여 금전적으로 피해를 주거나 개인정보를 탈취하는 범죄로가 증가되는 추세이다. 이와 같은 앱으로 인한 범죄를 대응하기 위하여, 신종 앱 사기 범죄를 분석하고 해결하는 방안이 요구되는 실정이다. 따라서 본 논문에서는 신종 앱 사기 범죄에 악용되는 가짜 앱을 탐지하고, 공식 기관에서 제공하는 정보를 기반으로 가짜 앱과 공식 앱에 대한 대량의 정보를 공유하는 프레임워크를 개발한다. 개발한 프레임워크를 통하여, 정보를 공유한 사람들에게 가짜 앱에 대한 정보를 알려주고, 공식 기관의 앱을 확인하는 안전한 모바일 환경을 제공할 것으로 사료된다.

  • PDF

실시간 리샘플링 기법을 활용한 LSTM 기반의 사기 거래 탐지 시스템 (LSTM-based fraud detection system framework using real-time data resampling techniques)

  • 김서이;이연지;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.505-508
    • /
    • 2024
  • 금융산업의 디지털 전환은 사용자에게 편리함을 제공하지만 기존에 존재하지 않던 보안상 취약점을 유발했다. 이러한 문제를 해결하기 위해 기계학습 기술을 적용한 사기 거래 탐지 시스템에 대한 연구가 활발하게 이루어지고 있다. 하지만 모델 학습 과정에서 발생하는 데이터 불균형 문제로 인해 오랜 시간이 소요되고 탐지 성능이 저하되는 문제가 있다. 본 논문에서는 실시간 데이터 오버 샘플링을 통해 이상 거래 탐지 시 데이터 불균형 문제를 해결하고 모델 학습 시간을 개선한 새로운 이상 거래 탐지 시스템(Fraud Detection System, FDS)을 제안한다. 본 논문에서 제안하는 SMOTE(Synthetic Minority Oversampling Technique)를 적용한 LSTM(Long-Short Term Memory) 알고리즘 기반의 FDS 프레임워크는 종래의 LSTM 알고리즘 기반의 FDS 모델과 비교했을 때, 데이터 사이즈가 96.5% 감소했으며, 정밀도, 재현율, F1-Score 가 34.81%, 11.14%, 22.51% 개선되었다.

웹 기반 디바이스 핑거프린팅을 이용한 온라인사기 및 어뷰징 탐지기술에 관한 연구 (A Study on Online Fraud and Abusing Detection Technology Using Web-Based Device Fingerprinting)

  • 장석은;박순태;이상준
    • 정보보호학회논문지
    • /
    • 제28권5호
    • /
    • pp.1179-1195
    • /
    • 2018
  • 최근 PC, 태블릿, 스마트폰 등 다중 접속환경을 통하여 웹 서비스에 대한 다양한 공격이 발생하고 있다. 이런 공격은 웹 서비스의 취약점을 통해 온라인 사기거래, 계정의 탈취 및 도용, 부정로그인, 정보 유출 등 여러 가지 후속 피해를 발생시키고 있다. Fraud 공격을 위한 새로운 가짜 계정의 생성, 계정도용 및 다른 이용자 이름 또는 이메일 주소를 사용하면서 IP를 우회하는 방법 등은 비교적 쉬운 공격 방법임에도 불구하고 이런 공격을 탐지하고 차단하는 것은 쉽지 않다. 본 논문에서는 웹 기반의 디바이스 핑거프린팅을 이용하여 웹 서비스에 접근하는 디바이스를 식별하여 관리함으로써 온라인 사기거래 및 어뷰징을 탐지하는 방법에 대해 연구하였다. 특히 디바이스를 식별하고 이를 스코어링 하여 관리는 것을 제안하였다. 제안 방안의 타당성 확보를 위하여 적용 사례를 분석하였고, 온라인 사기의 적극적인 대응과 이용자 계정에 대한 가시성을 확보할 수 있어 다양한 공격에 효과적으로 방어할 수 있음을 증명하였다.

순차패턴 분석을 통한 이상금융거래탐지 연구: 선불전자지급수단 거래를 중심으로 (A Study on the Fraud Detection through Sequential Pattern Analysis: Focused on Transactions of Electronic Prepayment)

  • 최병호;조남욱
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.21-32
    • /
    • 2021
  • 정보통신기술의 발달로 전자금융서비스가 활성화됨에 따라 선불전자지급수단을 이용한 전자금융거래도 증가하고 있다. 선불전자지급수단의 다양한 순기능에도 불구하고, 현금화가 용이하다는 점 때문에 전자금융사기에 악용되는 사례가 증가하고 있다. 본 논문에서는 선불전자 지급수단의 금융거래내역에 순차패턴 마이닝 기법을 적용하여 이상금융거래를 탐지하는 방안을 제시하였다. 선불전자지급수단의 금융거래내역을 서비스이용 순서로 나열한 다음 순차패턴 마이닝을 통해 이상금융거래 탐지패턴을 추출하였다. 도출된 패턴을 실제 금융거래 데이터에 적용하는 실험을 통해 방법론의 효과성을 검증하였다. 실험결과 테스트 데이터의 탐지성능 정확도가 95.6퍼센트로 나타나 제시된 방법론이 이상금융거래를 효과적으로 탐지할 수 있음을 확인하였다. 본 논문에서 제시한 방법론은 향후 이상금융거래탐지시스템 분석모델에 적용함으로써 전자금융사고 피해를 줄이는데 활용될 수 있을 것으로 기대된다.