• Title/Summary/Keyword: 사기탐지

Search Result 47, Processing Time 0.029 seconds

온라인 게임 결제 데이터 분석 기반의 이상거래 탐지 모델

  • Woo, Jiyoung;Kim, Hana;Kwak, Byung Il;Kim, Huy Kang
    • Review of KIISC
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2016
  • 소액결제에 대한 규제 완화로 이와 관련한 사기가 급증하고 있으며, 특히 소액결제가 대부분을 차지하는 온라인게임 산업은 관련 사기로 인한 피해가 증가하고 있다. 온라인 게임의 소액결제 사기는 단순히 금액에 대한 피해뿐만이 아니라 회사 브랜드에도 영향을 미치며, 나아가 고객 이탈로 이어질 수 있다. 소액결제 사기를 방지하기 위해 게임 산업에서도 이상거래 탐지 시스템이 요구되고 있다. 본 연구는 게임 사용자의 결제 패턴을 분석하여 이상거래를 탐지할 수 있는 머신러닝 기반의 이상거래 탐지 모델을 제시하며, 제안하는 모델을 글로벌 온라인 게임에 적용한 사례를 소개한다.

A Study on the Quantitative Evaluation of Initial Coin Offering (ICO) Using Unstructured Data (비정형 데이터를 이용한 ICO(Initial Coin Offering) 정량적 평가 방법에 대한 연구)

  • Lee, Han Sol;Ahn, Sangho;Kang, Juyoung
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.63-74
    • /
    • 2022
  • Initial public offering (IPO) has a legal framework for investor protection, and because there are various quantitative evaluation factors, objective analysis is possible, and various studies have been conducted. In addition, crowdfunding also has several devices to prevent indiscriminate funding as the legal system for investor protection. On the other hand, the blockchain-based cryptocurrency white paper (ICO), which has recently been in the spotlight, has ambiguous legal means and standards to protect investors and lacks quantitative evaluation methods to evaluate ICOs objectively. Therefore, this study collects online-published ICO white papers to detect fraud in ICOs, performs ICO fraud predictions based on BERT, a text embedding technique, and compares them with existing Random Forest machine learning techniques, and shows the possibility on fraud detection. Finally, this study is expected to contribute to the study of ICO fraud detection based on quantitative methods by presenting the possibility of using a quantitative approach using unstructured data to identify frauds in ICOs.

A Study on the Fraud Detection in an Online Second-hand Market by Using Topic Modeling and Machine Learning (토픽 모델링과 머신 러닝 방법을 이용한 온라인 C2C 중고거래 시장에서의 사기 탐지 연구)

  • Dongwoo Lee;Jinyoung Min
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.45-67
    • /
    • 2021
  • As the transaction volume of the C2C second-hand market is growing, the number of frauds, which intend to earn unfair gains by sending products different from specified ones or not sending them to buyers, is also increasing. This study explores the model that can identify frauds in the online C2C second-hand market by examining the postings for transactions. For this goal, this study collected 145,536 field data from actual C2C second-hand market. Then, the model is built with the characteristics from postings such as the topic and the linguistic characteristics of the product description, and the characteristics of products, postings, sellers, and transactions. The constructed model is then trained by the machine learning algorithm XGBoost. The final analysis results show that fraudulent postings have less information, which is also less specific, fewer nouns and images, a higher ratio of the number and white space, and a shorter length than genuine postings do. Also, while the genuine postings are focused on the product information for nouns, delivery information for verbs, and actions for adjectives, the fraudulent postings did not show those characteristics. This study shows that the various features can be extracted from postings written in C2C second-hand transactions and be used to construct an effective model for frauds. The proposed model can be also considered and applied for the other C2C platforms. Overall, the model proposed in this study can be expected to have positive effects on suppressing and preventing fraudulent behavior in online C2C markets.

Detecting Credit Loan Fraud Based on Individual-Level Utility (개인별 유틸리티에 기반한 신용 대출 사기 탐지)

  • Choi, Keunho;Kim, Gunwoo;Suh, Yongmoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.79-95
    • /
    • 2012
  • As credit loan products significantly increase in most financial institutions, the number of fraudulent transactions is also growing rapidly. Therefore, to manage the financial risks successfully, the financial institutions should reinforce the qualifications for a loan and augment the ability to detect a credit loan fraud proactively. In the process of building a classification model to detect credit loan frauds, utility from classification results (i.e., benefits from correct prediction and costs from incorrect prediction) is more important than the accuracy rate of classification. The objective of this paper is to propose a new approach to building a classification model for detecting credit loan fraud based on an individual-level utility. Experimental results show that the model comes up with higher utility than the fraud detection models which do not take into account the individual-level utility concept. Also, it is shown that the individual-level utility computed by the model is more accurate than the mean-level utility computed by other models, in both opportunity utility and cash flow perspectives. We provide diverse views on the experimental results from both perspectives.

Detecting Fake Job Recruitment with a Machine Learning Approach (머신 러닝 접근 방식을 통한 가짜 채용 탐지)

  • Taghiyev Ilkin;Jae Heung Lee
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.36-41
    • /
    • 2023
  • With the advent of applicant tracking systems, online recruitment has become more popular, and recruitment fraud has become a serious problem. This research aims to develop a reliable model to detect recruitment fraud in online recruitment environments to reduce cost losses and enhance privacy. The main contribution of this paper is to provide an automated methodology that leverages insights gained from exploratory analysis of data to distinguish which job postings are fraudulent and which are legitimate. Using EMSCAD, a recruitment fraud dataset provided by Kaggle, we trained and evaluated various single-classifier and ensemble-classifier-based machine learning models, and found that the ensemble classifier, the random forest classifier, performed best with an accuracy of 98.67% and an F1 score of 0.81.

Study on Intelligence (AI) Detection Model about Telecommunication Finance Fraud Accident (전기통신금융사기 사고에 대한 이상징후 지능화(AI) 탐지 모델 연구)

  • Jeong, Eui-seok;Lim, Jong-in
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.149-164
    • /
    • 2019
  • Digital Transformation and the Fourth Industrial Revolution, electronic financial services should be provided safely in accordance with rapidly changing technology changes in the times of change. However, telecommunication finance fraud (voice phishing) accidents are currently ongoing, and various efforts are being made to eradicate accidents such as legal amendment and improvement of policy system in order to cope with continuous increase, intelligence and advancement of accidents. In addition, financial institutions are trying to prevent fraudulent accidents by improving and upgrading the abnormal financial transaction detection system, but the results are not very clear. Despite these efforts, telecommunications and financial fraud incidents have evolved to evolve against countermeasures. In this paper, we propose an intelligent over - the - counter financial transaction system modeled through scenario - based Rule model and artificial intelligence algorithm to prevent financial transaction accidents by voice phishing. We propose an implementation model of artificial intelligence abnormal financial transaction detection system and an optimized countermeasure model that can block and respond to analysis and detection results.

A Framework Development for Fake App Detection and Official App Information Sharing (가짜 앱 탐지 및 공식 앱 정보 공유 프레임워크 개발)

  • Jinwook Kim;Yujeong No;Wontae Jung;Kyungroul Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.213-214
    • /
    • 2023
  • 스마트폰은 앱을 통하여 사람들에게 다양하고 유용한 기능을 제공하며, 새로운 앱들이 계속해서 개발되어 출시되고 있다. 그러나 이러한 긍정적인 측면에서 불구하고, 사람들의 편리한 사용에 대한 욕구를 이용하여, 신종 앱 사기와 같은 범죄가 발생하고 있으며, 이를 악용하여 금전적으로 피해를 주거나 개인정보를 탈취하는 범죄로가 증가되는 추세이다. 이와 같은 앱으로 인한 범죄를 대응하기 위하여, 신종 앱 사기 범죄를 분석하고 해결하는 방안이 요구되는 실정이다. 따라서 본 논문에서는 신종 앱 사기 범죄에 악용되는 가짜 앱을 탐지하고, 공식 기관에서 제공하는 정보를 기반으로 가짜 앱과 공식 앱에 대한 대량의 정보를 공유하는 프레임워크를 개발한다. 개발한 프레임워크를 통하여, 정보를 공유한 사람들에게 가짜 앱에 대한 정보를 알려주고, 공식 기관의 앱을 확인하는 안전한 모바일 환경을 제공할 것으로 사료된다.

  • PDF

LSTM-based fraud detection system framework using real-time data resampling techniques (실시간 리샘플링 기법을 활용한 LSTM 기반의 사기 거래 탐지 시스템)

  • Seo-Yi Kim;Yeon-Ji Lee;Il-Gu Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.505-508
    • /
    • 2024
  • 금융산업의 디지털 전환은 사용자에게 편리함을 제공하지만 기존에 존재하지 않던 보안상 취약점을 유발했다. 이러한 문제를 해결하기 위해 기계학습 기술을 적용한 사기 거래 탐지 시스템에 대한 연구가 활발하게 이루어지고 있다. 하지만 모델 학습 과정에서 발생하는 데이터 불균형 문제로 인해 오랜 시간이 소요되고 탐지 성능이 저하되는 문제가 있다. 본 논문에서는 실시간 데이터 오버 샘플링을 통해 이상 거래 탐지 시 데이터 불균형 문제를 해결하고 모델 학습 시간을 개선한 새로운 이상 거래 탐지 시스템(Fraud Detection System, FDS)을 제안한다. 본 논문에서 제안하는 SMOTE(Synthetic Minority Oversampling Technique)를 적용한 LSTM(Long-Short Term Memory) 알고리즘 기반의 FDS 프레임워크는 종래의 LSTM 알고리즘 기반의 FDS 모델과 비교했을 때, 데이터 사이즈가 96.5% 감소했으며, 정밀도, 재현율, F1-Score 가 34.81%, 11.14%, 22.51% 개선되었다.

A Study on Online Fraud and Abusing Detection Technology Using Web-Based Device Fingerprinting (웹 기반 디바이스 핑거프린팅을 이용한 온라인사기 및 어뷰징 탐지기술에 관한 연구)

  • Jang, Seok-eun;Park, Soon-tai;Lee, Sang-joon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1179-1195
    • /
    • 2018
  • Recently, a variety of attacks on web services have been occurring through a multiple access environment such as PC, tablet, and smartphone. These attacks are causing various subsequent damages such as online fraud transactions, takeovers and theft of accounts, fraudulent logins, and information leakage through web service vulnerabilities. Creating a new fake account for Fraud attacks, hijacking accounts, and bypassing IP while using other usernames or email addresses is a relatively easy attack method, but it is not easy to detect and block these attacks. In this paper, we have studied a method to detect online fraud transaction and obsession by identifying and managing devices accessing web service using web-based device fingerprinting. In particular, it has been proposed to identify devices and to manage them by scoring process. In order to secure the validity of the proposed scheme, we analyzed the application cases and proved that they can effectively defend against various attacks because they actively cope with online fraud and obtain visibility of user accounts.

A Study on the Fraud Detection through Sequential Pattern Analysis: Focused on Transactions of Electronic Prepayment (순차패턴 분석을 통한 이상금융거래탐지 연구: 선불전자지급수단 거래를 중심으로)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.21-32
    • /
    • 2021
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly increasing. The increased transactions of electronic prepayment, however, also leads to the increased fraud attempts. It is mainly because electronic prepayment can easily be converted into cash. The objective of this paper is to develop a methodology that can effectively detect fraud transactions in electronic prepayment, by using sequential pattern mining techniques. To validate our approach, experiments on real transaction data were conducted and the applicability of the proposed method was demonstrated. As a result, the accuracy of the proposed method has been 95.6 percent, showing that the proposed method can effectively detect fraud transactions. The proposed method could be used to reduce the damage caused by the fraud attempts of electronic prepayment.