• Title/Summary/Keyword: 뿜칠재료

Search Result 19, Processing Time 0.031 seconds

An Experimental Study on Fundamental Properties of a Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인 시작품의 기초 물성평가)

  • Chang, Soo-Ho;Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.220-234
    • /
    • 2016
  • Sprayable waterproofing membrane has been considered as a substitute for a sheet waterproofing membrane in a variety of underground excavation works. However, fundamental properties of sprayble waterproofing membrane have not been fully given yet. In this study, a new two-component sprayable waterproofing membrane prototype was developed. In addition, its physico-mechanical properties were measured and compared with those of two kinds of thin spray-on liners where constitutive materials and construction methods are very close to each other. From direct tensile tests, the sprayable waterproofing membrane with elongations at break between 250% and 300% showed much higher ductility than TSLs. However, the sprayable waterproofing membrane had a limitation as a support member since its bond strength and loading capacity was lower than those of TSLs. From three-dimensional X-ray CT images, the porosity of the sprayable waterproofing membrane was estimated to be 26.13%. However, most of pores which might have been generated during membrane curing were not observed to be interconnected but isolated.

A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The sprayable waterproofing membrane is installed between shotcrete to provide crack bridging and hence prevent flow of liquid water as a waterproofing system. Because of its material characteristics, the sprayable membrane can be constructed at more complex structure than sheet membrane. The main component of the sprayable waterproofing membrane is a polymer-based material, therefore, moisture can migrate through sprayable waterproofing membrane materials by capillary and vapor diffusion mechanisms. The moisture transport mechanisms can have an influence on the degree of saturation and may influence the pore pressure and risk of freeze-thaw damage on concrete linings and membrane. In this study, long-term hygrothermal behavior was simulated with considering moisture transport and long-term effects on saturation of tunnel linings. From the simulation, due to water absorption and vapor transport properties of sprayable membrane, change of relative humidity and water content in tunnel lining can be evaluated.

Performance Study of High-Performance Synthetic Supporting Materials by Real-Scale Tests (실대형 시험을 통한 고성능 합성지보재의 성능 고찰)

  • Kang, Tae-Ho;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.428-439
    • /
    • 2021
  • A spray-on membrane is a material composed of a polymer, and is a spray-type material that is expected to be able to replace materials such as existing shotcrete or sheet membrane for support or waterproofing purposes. In the previous studies, it is expected that the thickness of the support material such as shotcrete can be reduced if the spray-on membrane is additionally installed on the existing cement-based support materials. In this study, a three-point bending test was performed by a spray-on membrane on the high-performance shotcrete on the outside, and comparison was made between the case where high-performance shotcrete and a spray-on membrane were installed. As a result of comparing the values calculated through the standard test and the real-size bending test, there was no significant difference in terms of flexural strength, but it was found that there was a difference in flexural toughness.

The Experimental Study on the Suggestion for Bond Strength Standard of Sprayed Fire Resistive Materials Used at the Substation Steel Structures (변전소 철골 내화뿜칠 부착강도 기준설정에 관한 실험적 연구)

  • Park, Dong-Su;Joung, Won-Seoup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.128-137
    • /
    • 2014
  • Sprayed fire resistive materials are mainly used at steel structures to satisfy fireproof construction standard. However, the regulations on bond strength have been not considered with the exception of structures in the nuclear power plants, although it is an important factor showing material properties. Therefore, this paper suggested guidelines for bond strength of sprayed fire resistive materials used in the substation, by measuring bond strength according to aging of structures and impact loading considering environment of substations. It is judged that the bond strength suggested in this paper is the minimum value because it was measured from specimens widely used.

Evaluation of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance (내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가)

  • Won, Jong-Pil;Choi, Seok-Won;Park, Chan-Gi;Park, Hae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.559-568
    • /
    • 2006
  • The purpose of this study is to evaluate the mechanical performance and fire resistance of wet-mixed high strength sprayed polymer-modified mortar in order to protect tunnel lining system which are in the event of fire disaster. Since the current commercial fire-resistant materials reproduce the low strength issue of mortar, this study aims to provide an enhanced fire-resistant mortar with a proper strength. Normally, a large temperature gradient phenomenon arise in the vicinity of free surfaces which are fully exposed in the event of persistent flame. Thereby, the determination of optimal cover depth of wet-mixed high strength sprayed polymer-mortar(WHSPM) is important for fire-resistance of tunnel lining system. With comparison of current commercial fire-resistance materials and WHSPM, the experimental result of WHSPM shows the better fire-resistant performance than the others. In addition, the cover limitation should be controlled by minimum 4cm depth in order to avoid fire-induced damage.

Development of a Powder-type Thin Spray-on Liner and Its Performance Evaluation at Different Curing Ages (분말형 박층 뿜칠 라이너 시작품의 제작과 성능평가)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.293-302
    • /
    • 2015
  • Thin Spray-on Liner (TSL) has been considered as a new rock support to replace shotcrete as well as wire mesh. However, the development of its original production technology is highly in demand since it is not open to the public. Therefore, two kinds of powder-type TSL prototypes were developed as the first development stage. Then, their mechanical properties were experimentally compared with those of a two-component foreign TSL material including both of liquid and powder components. From a series of experiments, the first TSL prototype mixing condition satisfied every TSL performance requirements specified by EFNRAC (2008), and showed much higher tensile and bond strengths than those of the two-component foreign TSL, even though the other TSL prototype cannot be used as a support member since its elongation at break is much lower than its corresponding EFNARC (2008) performance criterion. In addition, a further study to increase the ductility of the first TSL prototype might be necessary to guarantee its higher applicability to field conditions.

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.

Evaluation of Spraying Characteristics for Masonry Buildings Seismic Retrofit Fiber-Reinforced Mortar (조적조 내진보강용 섬유보강 모르타르의 분사특성 평가)

  • Hwang, Byoung-Il;Park, Jong-Pil;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.37-43
    • /
    • 2020
  • The seismic reinforcement ratio of SOC facilities, such as domestic roads and railroads, is 96%. Out of approximately 7 million buildings as of 2016, only 0.51 million buildings with seismic performance were secured. Although the proportion of masonry structures is 38.8% of the total buildings, there is almost no seismic resistance, only 2.0%. To solve the problem in Korea, government-level seismic measures are being promoted, but the situation is insufficient. Overseas, the UBC research team in Vancouver, Canada, has developed and used EDCC to reinforce the seismic performance of masonry buildings. EDCC is a construction material that can secure concrete ductility capability by mixing fibers and secure deformation resistance of concrete through bridging action. It is necessary to examine various materials because EDCC is not used as a spray type of secure seismic reinforcement. In this study, as part of the research and development of spraying materials to improve the durability of masonry buildings, this study examined the spraying characteristics of fiber-reinforced mortar according to fiber use and the viscosity change according to the use of thickener. As a result, the working performance of the fiber-reinforced mortar for seismic reinforcement was improved when using 1% fiber and 1% thickener.

An experimental study on bonding and bearing capacities of thin spray-on liner to evaluate its applicability as a tunnel support member (터널 지보재로서의 적용성 검토를 위한 박층 뿜칠 라이너의 부착성능과 지보성능의 평가)

  • Han, Jin-Tae;Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.571-583
    • /
    • 2013
  • The use of Thin Spray-on Liner (TSL) as an alternative to shotcrete has drastically increased since 1990s when it was first developed and introduced to mines. In this study, tensile strength test, bond strength test, compression test with specimens coated by TSL, and two kinds of bending tests proposed by EFNARC (2008) were performed with two kinds of TSLs with different material compositions in order to evaluate their support capacities. As a result, both TSLs were shown to be satisfactory for the minimum performance requirements for a structural rock support suggested by EFNARC (2008) and tensile strength of a TSL was shown to increase as its content of polymer was higher. In contrast, its bond strength was shown to increase proportional to the content of a cementitious component especially at the early age.