• Title/Summary/Keyword: 뿌리 스트레스

Search Result 139, Processing Time 0.036 seconds

The change of somatic cell embryogenesis in Kalanchoe pinnata because of agar concentration in stimulating root stress (뿌리 스트레스를 유발하는 agar농도에 따른 Kalanchoe pinnata의 체세포 배 형성 변화)

  • Park, Jongbum;Kim, Jin-Seok;Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.320-324
    • /
    • 2017
  • Development of modern agricultural machinery and accompanying agricultural development cause soil compaction and reduce growth by stressing roots. Kalanchoe pinnata was used to investigate the impact of stress on rooting and changes in plant growth and reproduction. K. pinnata forms somatic embryos capable of asexual reproduction at the edge of leaves. Impact of root pressurization of K. pinnata on somatic embryogenesis and organ differentiation according to external stress factors was investigated by using a high concentration of agar and this phenomenon was studied histologically. Agar concentration in culture media ranged from 0.5%-1.5% to induce a compression effect on roots. The stem and leaf of K. pinnata were subjected to a microtechnique process to study changes in tissue. In vivo, K. pinnata produced 2nd and 3rd plantlets at edges of leaves from lack of water and excessive lighting conditions. In in vitro culture studies, the lower the concentration of agar, the higher the population and the higher the biomass, but plantlet did not occur in leaf bends. Conversely, as concentration of agar increased, increase in the number of individuals was low. Plantlet development occurred only in agar 1.5% medium. The difference in agar concentration was a stressor in the root of K. pinnata, and thus the pattern of asexual reproduction changed from the division method in root to a plantlet generation in leaf. This suggests root pressurization may act as stress and change in the plant reproduction pattern.

The Oxidative Stress Induction and Response of Antioxidative Enzymes in the Large Patch-Infected Zoysiagrass I. Oxidative stress induction (라지 팻치에 감염된 잔디의 산화적 스트레스 발현과 항산화효소의 활력의 변화 I. 산화적 스트레스 발현)

  • Kim, Dae-Hyun;Lee, Bok-Rye;Li, Ming;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.2
    • /
    • pp.129-136
    • /
    • 2007
  • To investigate the effect of large patch infection on oxidative stress induction, growth, $H_2O_2$ concentration and lipid peroxidation were compared between pathogen-infected and healthy (control) zoysiagrass. The sampling for leaves and roots were carried out every 2 days for a period of 6 days. Pathogen-infection increased root mortality by 30% compared to control. Dry mass was not significantly affected by pathogen-infection until day 4, but significant decreases in both leaves (-14%) and roots (-20%) were observed at day 6. The $H_2O_2$ concentration in pathogen-infected leaves rapidly increased within the first 2 days(+28%) and then slightly decreased. The increase of $H_2O_2$ in pathogen-infected roots was distinct, showing 1.7-fold higher level than control at day 6. The extent of lipid peroxidation caused by pathogen-infection continuously increased for the first 4 days. This was then stagnated until day 6. In roots, the significant increase of lipid peroxidation was observed only at day 2. These results indicate that large patch-infection induces oxidative stress, and that the oxidative stress responsive pattern was plant organ specific.

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Growth and Utility of Rhodiola sachalinensis in Baekdu Mountain II. Activities of Superoxide Dismutase in Portions of the Seedlings (백두산 자생참돌꽃의 생육과 이용 II. 유식물의 부위별 superoxide dismutase 활성)

  • So, Sang-Sup
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Superoxide dismutase (SOD) activities were investigated from the portions of shoots and roots in accordance with developmental stage and in response to environmental stress and antioxidants using Rhodiola-seedlings. The rates of SOD activities were revealed highly at the portion of roots and its tip of seedlings in the latter stages rather than the initial stages. SOD activities of seedlings in the initial stages treated with sodium chloride and cadmium as environmental stressors showed the decrease by 15 and 30% with respect to the control, respectively. However, in spite of stressor-treatments, the activities in the roots were increased according to the growth period showing a maximum rate of up to 45%. Also, SOD activities of the seedling treated with ascorbic acid as a antioxidant were increased by 46% of control value, but this was similar to the rate revealed in the presence of stressors. These results suggest that SOD activities in Rhodiola-seedlings may be related with the important defence-system against injurious environments.

Effects of Root of Taraxacum coreanum Nakai on the Inhibition of Inflammation and Oxidative Stress Induced by Lipopolysaccharide in ICR Mice (흰 민들레 뿌리의 항염증 및 산화 스트레스 개선 효과)

  • Cho, Byung-Je;Kim, Mijeong;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1763-1770
    • /
    • 2015
  • The effects of root of Taraxacum coreanum Nakai (TC), on the suppression of inflammation and oxidative stress induced by lipopolysaccharide (LPS) in ICR mice were studied. LPS (10 mg/kg body weight) was injected into ICR mice in between two consecutive oral administrations. Hot water extract of fresh TC (HWETC) was administered to mice immediately before and 24 h after LPS injection. The animal groups used in this study were as follows: NOR group (PBS injection, DW administration), CON group (LPS injection, DW administration), and TC group (LPS injection, 1.4 g/kg bw of HWETC administration). Mice in the CON group lost weight due to inflammation induced by LPS, while the body weight of the TC group mice increased significantly, indicating that inflammation was inhibited by HWETC administration. Compare with the CON group, plasma and hepatic triglyceride, reactive oxygen species, peroxynitrite, and hepatic thiobarbituric acid reactive substances concentrations of the TC group decreased significantly (P<0.05). The protein expression of a pro-inflammatory transcription factor, nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and its target enzyme, cyclooxygenase 2, increased in response to LPS injection, but was suppressed by HWETC administration (P<0.05). In conclusion, HWETC appears to ameliorate the oxidative stress and inflammatory responses induced by LPS via inhibition of $NF-{\kappa}B$ activation.

Induction of Anthocyanin and Betaine by Salinity Stress in Germinating Seeds (발아중인 종자로부터 Salinity Stress에 의해 유도되는 Anthocyanin과 Betaine에 관안 연구)

  • 이인순;문혜연
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.344-350
    • /
    • 2001
  • The effect of salinity stress of Brassica olearacea and Capsicum annuum were studied at various levels of salinity conditions(Na-gluconate, K-gluconate, NaCl, KCl). The effects of salinity stress were measured by seedling growth rates and secondary metabolites contents of the stressed plants. Each seedling studied on the response of different salinity stress. Seedling growth of Capsicum annuum was inhibited up to 200 mM salt tolerance and Brassica olearacea was inhibited up to 400 mM salt tolerance. The produced anthocyanin was separated to high value from 200 mM NaCl in case of Brassica olearana and 50 mM K-gluconate in case of Capsicum annuum. The BADH activity was very high in Brassica olearacea seedlings treated with 200 mM NaCl and in Capsicum annuum seedlings treated with 100 mM K-gluconate. The BADH activities were increased during the early culture days, it induced betaine synthesis. The salinity stress promoted BADH activiy, subsequently endogenous betaine contents were increased, and it seemed to be secure seedling from salinity stress. The salinity concentration of 200 mM was effective on the inhibition of seed germination and on the increase of proline accumulation in tissue. The inhibition of seedling growth and accumulation of secondary metabolites in seedling were caused osmotic hypersensitivity against salinity stress.

  • PDF

Correlation between Neurodynamic Tests for Patients with Sciatic Radiculopathy (볼기신경 뿌리병증 환자에 대한 신경동역학적 검사간의 상관관계)

  • Kim, Seung-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.4
    • /
    • pp.415-424
    • /
    • 2011
  • 연구목적 : 본 연구는 볼기신경 뿌리병증 환자에 대하여 역학적 스트레스인 압박과 긴장을 가하여 환자의 증상을 나타내 신경동역학적 검사간의 상관관계를 수행하였다. 연구방법 : 신경동역학검사인 하지직거상검사, 수정된 활시위검사, 슬럼프검사에 앞서 방사선과 전문의에 의해 자기공명영상 판독을 실시하여 허리원반 이탈로 진단받은 다리쪽으로 방사통을 호소하는 21명의 환자가 참여 하였다. 수집된 자료는 질적변수에 따른 빈도와 비율은 교차분석표로 작성하였고, 신경동역학적 검사간의 상관관계를 검정하기 위해 피어슨의 카이스퀘어(Pearson's chi-square)을 시행하였다. 연구결과 : 허리 자기공명영상 결과, 증상에 대한 두 검사 간 교차표를 작성하여 하지직거상검사와 수정된 활 시위검사, 하지직거상검사와 슬럼프검사는 유의한 상관관계는 없었지만(p>.05) 수정된 활시위검사와 슬럼프검사는 통계적으로 유의한 상관관계(p<.05)가 제시되었다. 결론 : 볼기신경 뿌리병증 환자에 대한 신경동역학검사인 수정된 활시위검사와 슬럼프검사가 통계적으로 유의한 상관관계를 나타내는 증거를 제공하였다. 신경동역학 검사는 신경계에 역학적 스트레스 즉, 긴장, 활주, 또는 압박 자극을 주어 신경기능이상 환자에 대해 적절한 검사를 제시하였다.

업체탐방 - 저비용 고효율로 농장 환경 개선하는 '위드팜'

  • Choe, In-Hwan
    • KOREAN POULTRY JOURNAL
    • /
    • v.46 no.4
    • /
    • pp.112-115
    • /
    • 2014
  • 국내 계사를 살펴보면 우레탄 또는 스티로폼을 거의 사용하고 있다. 오랜 시간이 지나면서 계사의 부식과 쥐의 영향으로 단열재 내부가 파괴되고 있는 상황이다. 하지만 최근 설립된 위드팜이 뿌리는 단열재를 출시하면서 계사의 신축 및 리모델링시 저비용으로 고효율을 기대할 수 있게 됐다. 질석과 펄라이트로 만든 뿌리는 단열재는 불연기능으로 화재예방, 단열기능으로 여름철 고온스트레스 예방, 쥐의 단열재 파괴 예방이 가능해 계사 환경 개선에 큰 도움을 주고 생산성에도 영향을 끼친다. 이번호에는 당당하게 축산업에 뛰어든 신입 축산업체인 위드팜(대표 김재국)을 소개코자 한다.

Mycorrhizal colonization effects on C metabolism in relation to drought-tolerance of perennial ryegrass (페레니얼 라이그라스에서 Mycorrhiza 접종이 탄수화물대사와 가뭄스트레스 저항성에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.232-242
    • /
    • 2002
  • To investigate the effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) colonization on drought-stress tolerance, leaf water potential, chlorophyll concentration, P content and carbohydrate composition were examined in perennial ryegrass (Lolium perenne L.) plants exposed to drought-stressed or well-watered conditions. Drought stress significantly decreased leaf water potential, P content and leaf growth. These drought-induced damages were moderated by mycorrhizal colonization. Drought stress decreased the concentration of soluble sugars in shoots. AM plants had a higher foliar soluble sugar than non-AM plants under drought stress condition. Drought stress depressed the accumulation of starch and fructan in shoots, but stimulated in roots. Under drought-stressed condition, starch concentration in roots was higher in non-AM plants than in AM plants. Fructan was the largest pool of carbohydrates, showing the highest initial concentration and the highest net increase for 28 days of treatment. Drought stress slightly decreased fructan concentration in shoots, but remarkably increased in roots. Under drought-stressed condition, fructan concentrations in non-AM and AM shoots at day 28 were 18.7% and 13.3% lower than the corresponding values measured at well-watered plants. However, in the roots, fructan accumulation caused by drought was lessen 13.6% by mycorrhizal colonization. The results obtained suggest that mycorrhizal colonization improves drought tolerance of the host plants by maintaining higher leaf water status and P status, and by retaining more foliar soluble sugars.

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots (잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Sehee;Kim, Eunsuk;Jang, Ha-young;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.