DOI QR코드

DOI QR Code

The Oxidative Stress Induction and Response of Antioxidative Enzymes in the Large Patch-Infected Zoysiagrass I. Oxidative stress induction

라지 팻치에 감염된 잔디의 산화적 스트레스 발현과 항산화효소의 활력의 변화 I. 산화적 스트레스 발현

  • Kim, Dae-Hyun (Chonnam National University) ;
  • Lee, Bok-Rye (Chonnam National University) ;
  • Li, Ming (Chonnam National University) ;
  • Kim, Tae-Hwan (Department of Animal Science & Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University)
  • Published : 2007.06.30

Abstract

To investigate the effect of large patch infection on oxidative stress induction, growth, $H_2O_2$ concentration and lipid peroxidation were compared between pathogen-infected and healthy (control) zoysiagrass. The sampling for leaves and roots were carried out every 2 days for a period of 6 days. Pathogen-infection increased root mortality by 30% compared to control. Dry mass was not significantly affected by pathogen-infection until day 4, but significant decreases in both leaves (-14%) and roots (-20%) were observed at day 6. The $H_2O_2$ concentration in pathogen-infected leaves rapidly increased within the first 2 days(+28%) and then slightly decreased. The increase of $H_2O_2$ in pathogen-infected roots was distinct, showing 1.7-fold higher level than control at day 6. The extent of lipid peroxidation caused by pathogen-infection continuously increased for the first 4 days. This was then stagnated until day 6. In roots, the significant increase of lipid peroxidation was observed only at day 2. These results indicate that large patch-infection induces oxidative stress, and that the oxidative stress responsive pattern was plant organ specific.

한국형 잔디에 있어 병원성 (라지 팻치) 감염이 산화적 스트레스의 발현에 미치는 영향을 규명하기 위해 라지 팻치에 감염된 잔디의 생육, 뿌리 건사율, 과산화수소 농도 및 지질과산화 정도를 감염이되지 않은 대조구와 비교하였다. 처리 후 6일 동안 이틀간격으로 잎과 뿌리 시료에 대해 각각 분석하였다. 라지 팻치에 감염된 잔디 뿌리의 건사율은 대조구에 비해 약 30% 증가하였다. 건물 함량은 4일째까지는 유의적인 차이가 없었으며 6일차에서만 라지 팻치 감염에 따라 잎에서 14% 뿌리에서 20% 각각 감소하였다. 과산화수소의 농도는 라지 팻치에 감염된 잎에서 초기 2일 동안 약 28%의 높은 증가를 하였다가 이후 서서히 감소하여 6일차에는 대조구에 비교하여 11% 낮은 수준이었다. 뿌리에서는 감염에 따른 과산화수소의 증가가 뚜렷하여 6일차에는 대조구에 비해 약 1.7배 높았다. 지질과산화 정도는 잎의 경우, 라지 팻치 감염에 따라 초기 4일간 지속적으로 증가하다가 이후 정체하였으며 뿌리에서는 초기 2일간의 증가가 뚜렷하였다. 이러한 결과들은 잔디에 있어 라지 팻치 감염은 산화적 스트레스를 유도하며, 잎과 뿌리 조직간에 산화적 스트레스 발현정도 및 역동성은 차이가 있음을 보여준다.

Keywords

References

  1. Asada, K. and M. Takahashi. 1987. Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition (Eds. Kyle, D.J., Osmond, C.B. and O. Arntzen). Elsevier, Amsterdam. pp. 227-289
  2. Axelrod, B., T.M. Cheesbrough and S. Laakso. 1981. Lipoxygenase from soybeans. Methods Enzymol. 71:441-451 https://doi.org/10.1016/0076-6879(81)71055-3
  3. Bradley, D.J., P. Kjellbom and C.J. Lamb. 1992. Elicitor- and wound-induced oxidative cross-linking of a proline rich plant cell wall protein: A novel, rapid defense response. Cell 70:21-23 https://doi.org/10.1016/0092-8674(92)90530-P
  4. Carpita, N.C. and D.M. Gilbeaut. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1-30 https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
  5. Chazen, O. and P.M. Neumann. 1994. Hydraulic signals from roots and rapid cell-wall hardening in growing maize (Zea maize L.) leaves are primary responses to polyethylene glycol-induced water deficit. Plant Physiol. 104:1385-1392 https://doi.org/10.1104/pp.104.4.1385
  6. Del Rio, L.A., L.M. Sandalio, J.M. Palma, P. Bueno and F.J. Corpas. 1992. Metabolism of oxygen radicals in peroxisomes and cellular implication. Free Radic. Biol. Med. 13:557-580 https://doi.org/10.1016/0891-5849(92)90150-F
  7. Dhindsa, R.S., P.P. Dhindsa and T.A. Thorpe. 1981. Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decresed levels of superoxide dismutase and catalase. J. Exp. Bot. 32:93-101 https://doi.org/10.1093/jxb/32.1.93
  8. Du, Z. and W.J. Bramlage. 1992. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agri. Food Chem. 40:1566-1570 https://doi.org/10.1021/jf00021a018
  9. Foyer, C.H., H. Lopez-Delgado, J.F. Dat and I.M. Scott. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant. 100:241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  10. Frensch, J. 1997. Primary responses of root and leaf elongation to water deficits in the atmosphere and soil solution. J. Exp. Bot. 48:985-999
  11. Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cells of angiosperms. Annu. Rev. Plant Physiol. 37:165-186 https://doi.org/10.1146/annurev.pp.37.060186.001121
  12. Fu, J. and B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Envrion. Exp. Bot. 45:104-114
  13. Hohl M, H. Greiner and P. Schopfer. 1995. The cryptic growth response of maize coleoptile and its relationship to $H_2O_2-dependent$ cell wall stiffening. Physiol. Plant. 94:491-498 https://doi.org/10.1111/j.1399-3054.1995.tb00959.x
  14. Hernandez, J.A., M.A. Ferrer, A. Jimenez, A.R. Barcelo and F. Sevilla. 2001. Antioxidant systems and $O_2/H_2O_2$ production in the apoplast of pea leaves, its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831 https://doi.org/10.1104/pp.010188
  15. Inze, D. and M. Van Montagu. 1995. Oxidative stress in plants. Curr. Opin. Biorech. 6:153-158 https://doi.org/10.1016/0958-1669(95)80024-7
  16. Jimenez, A., J.A. Hernandez, G. Pastori, L.A. del Rio and F. Sevilla. 1998. Role of the ascorbate, glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118:1327-1335 https://doi.org/10.1104/pp.118.4.1327
  17. Katerji, N., J.W. van Hoorn, A. Hamdy, M. Mastrorilli and E. Mou Karzel. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yields. Agri. Water Manage. 34:57-69 https://doi.org/10.1016/S0378-3774(96)01294-2
  18. Kim, T.H., B.R. Lee, W.J. Jung, K.Y. Kim, J.C. Avice and A. Ourry. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct. Plant Biol. 31:847-855 https://doi.org/10.1071/FP04059
  19. Knievel, D.P. 1973. Procedure for estimating ratio of living to dead root dry matter in root core sample. Crop Sci. 13:124-126 https://doi.org/10.2135/cropsci1973.0011183X001300010043x
  20. Kramer, P.J. 1983. Water stress research: progress and problems. Curr. Top. Plant Biochem. Physiol. 2:129-144
  21. Kwon, Y.R., S.H. Kim, M.S. Jung, M.S. Kim, J.E. Oh, H.W. Ju, K.I. Kim, E. Vierling, H. Lee and S.W. Hong. 2007. Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J. 49:184-193 https://doi.org/10.1111/j.1365-313X.2006.02950.x
  22. Lee, B.R., K.Y. Kim, W.J. Jung, J.C. Avice, A. Ourry and T.H. Kim. 2007. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J. Exp. Bot. 58:1271-1279 https://doi.org/10.1093/jxb/erl280
  23. Lin, C.L. and C.H. Kao. 2002. Osmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regul. 37:177-184 https://doi.org/10.1023/A:1020523017867
  24. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503-510 https://doi.org/10.2135/cropsci2000.402503x
  25. Lopez-Huertas, E., F.J. Corpas, L.M. Sandalio and L.A. del Rio. 1999. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337:531-536 https://doi.org/10.1042/0264-6021:3370531
  26. Mckersie, B.D. and Y.Y. Leshem. 1994. Stress and stress coping in cultivated plants. Kluwer Academic Publishers, Dordrecht. pp. 349-367
  27. Menconi, M., C.L.M. Sgherri, C. Pinzino and F. Navari-Izzo. 1995. Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. J. Exp. Bot. 46:1123-1130 https://doi.org/10.1093/jxb/46.9.1123
  28. Mittler, R. and B.A. Zilinskas. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5:397-405 https://doi.org/10.1111/j.1365-313X.1994.00397.x
  29. Moloi, M.J., J. Amie and A.J. Westhuizen. 2006. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 163:1118-1125 https://doi.org/10.1016/j.jplph.2005.07.014
  30. Neumann, P.M., H. Azaizeh and D. Leon. 1994. Hardening of root cell walls: Growth inhibitory responses to salinity stress. Plant Cell Environ. 17:303-309 https://doi.org/10.1111/j.1365-3040.1994.tb00296.x
  31. Noctor, G. and C. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Mol. Biol. 49:249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  32. Schopfer, P. 1994 Histochemical demonstrations and localization of $H_2O_2$ in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104:1269-1275 https://doi.org/10.1104/pp.104.4.1269
  33. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125:27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  34. Zhang, J. and M.B. Kirkham. 1996. Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid and propyl gallate. J. Plant Physiol. 149:489-493 https://doi.org/10.1016/S0176-1617(96)80323-3