Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.295-298
/
2014
In this paper, an efficient design of HEVC Adaptive Loop Filter(ALF) for filter coefficients estimation is proposed. The ALF performs Cholesky decomposition of $10{\times}10$ matrix iteratively to estimate filter coefficients. The Cholesky decomposition of the ALF consists of root and division operation which is difficult to implement in a hardware design because it needs to many computation rate and processing time due to floating-point unit operation of large values of the Maximum 30bit in a LCU($64{\times}64$). The proposed hardware architecture is implemented by designing a root operation based on Cholesky decomposition by using multiplexer, subtracter and comparator. In addition, The proposed hardware architecture of efficient and low computation rate is implemented by designing a pipeline architecture using characteristic operation steps of Cholesky decomposition. An implemented hardware is designed using Xilinx ISE 14.3 Vertex-6 XC6VCX240T FPGA device and can support a frame rate of 40 4K Ultra HD($4096{\times}2160$) frames per second at maximum operation frequency 150MHz.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.271-274
/
2014
This paper proposes high-performance SAO(Sample Adaptive Offset) in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. SAO is a newly adopted technique belonging to the in-loop filter in HEVC. The proposed SAO encoder hardware architecture uses three-layered buffers to minimize memory access time and to simplify pixel processing and also uses only adder, subtractor, shift register and feed-back comparator to reduce area. Furthermore, the proposed architecture consists of pipelined pixel classification and applying SAO parameters, and also classifies four consecutive pixels into EO and BO concurrently. These result in the reduction of processing time and computation. The proposed SAO encoder architecture is designed by Verilog HDL, and implemented by 180k logic gates in TSMC $0.18{\mu}m$ process. At 110MHz, the proposed SAO encoder can support 4K Ultra HD video encoding at 30fps in real time.
To learn mathematics effectively, understanding vocabulary is essential. Accordingly, as a way to present vocabulary for mathematics education, high-frequency vocabulary was extracted from the 2009 revised 1st and 2nd grade mathematics textbooks and the 2015 revised 1st and 2nd grade mathematics textbooks. At this time, mathematics textbooks were analyzed by grade and semester, and vocabulary with a common frequency of 5 or more was extracted. In order to use it effectively in school settings, common vocabulary for each grade and intensive vocabulary for each semester were presented. As a result of the study, 61 vocabulary words for first grade education and 121 vocabulary words for second grade education were selected. As a result of analysis by vocabulary level, various levels of vocabulary from grades 1 to 5 were used. As a result of analysis by vocabulary type, the proportion of academic words increased similarly, but the proportion of technical words was found to be highest in the first semester of the second year. Based on these results, the extracted vocabulary for mathematics education is used as a resource for vocabulary instruction for students' mathematics education in each grade to help students learn mathematics.
Recently, the 2022 revised mathematics curriculum has established achievement standards for equal sign and equality, and efforts have been made to examine teaching methods and student understanding of relational understanding of equal sign. In this context, this study conducted a lesson that emphasized relational understanding in an introduction to equal sign, and compared and analyzed the understanding of equal sign between the experimental group, which participated in the lesson emphasizing relational understanding and the control group, which participated in the standard lesson. For this purpose, two classes of students participated in this study, and the results were analyzed by administering pre- and post-tests on the understanding of equal sign. The results showed that students in the experimental group had significantly higher average scores than students in the control group in all areas of equation-structure, equal sign-definition, and equation-solving. In addition, when comparing the means of students by item, we found that there was a significant difference between the means of the control group and the experimental group in the items dealing with equal sign in the structure of 'a=b' and 'a+b=c+d', and that most of the students in the experimental group correctly answered 'sameness' as the meaning of equal sign, but there were still many responses that interpreted the equal sign as 'answer'. Based on these results, we discussed the implications for instruction that emphasizes relational understanding in equal sign introduction lessons.
Surface data generally represent continuous distribution of geographical or social phenomena of a region in urban analysis. Instances include distribution of temperature, population of region, and various distributions related to human activities. When spatial data are given in the form of surface, surface comparison is required as a way of comprehending the surface change or the relationship between two surfaces. As for previous approaches of surface comparison, there are visualization, quantitative methods and qualitative method. All those approaches, however, show the difference between two surfaces in a limited way. Especially, they are not able to distinguish spatial difference between two surfaces. To overcome such problem, this paper proposes a method of comparing two surfaces in terms of their spatial structure. Main concept of the method comes from earth moving problem and the method is named minimum surface transformation, here. When a surface is transformed into another, total surface volume moved in the process of transformation should be the minimum. Both quantitative and spatial differences between two surfaces are evaluted by total surface volume moved and the distribution of moved surface volume of each cell respectively. The method is applied to hypothetical and actual data. From the former, it is understood that the method explains how two surfaces are quantitatively and spatially different. The result of the latter shows that moved total surface volume decreases as time goes by which fits the actual situation that population change rate gets smaller. Concerning the other measure of surface difference, the distribution of $X_{ij}$ describes detailed flow of surface volume than that of simply subtracting surface volume by indicating to what direction the population change occurs.
In this paper, in order to improve the teaching contents on even and odd number, composition and decomposition of numbers, and (1 digit)+(1 digit) with carrying, (10 and 1 digit)-(1 digit) with borrowing, the corresponding teaching contents in ${\ll}$Math 1-1${\gg}$, ${\ll}$Math 1-2${\gg}$ are critically reviewed. Implications obtained through this review can be summarized as follows. First, the current incomplete definition of even and odd numbers would need to be reconsidered, and the appropriateness of dealing with even and odd numbers in first grade would need to be reconsidered. Second, it is necessary to deal with composition and decomposition of numbers less than 20. That is, it need to be considered to compose (10 and 1 digit) with 10 and (1 digit) and to decompose (10 and 1 digit) into 10 and (1 digit) on the basis of the 10. And the sequence dealing with composition and decomposition of 10 before dealing with composition and decomposition of (10 and 1 digit) need to be considered. And it need to be considered that composing (10 and 1 digit) with (1 digit) and (1 digit) and decomposing (10 and 1 digit) into (1 digit) and (1 digit) are substantially useless. Third, it is necessary to eliminate the logical leap in the calculation process. That is, it need to be considered to use the composing (10 and 1 digit) with 10 and (1 digit) and decomposing (10 and 1 digit) into 10 and (1 digit) on the basis of the 10 to eliminate the leap which can be seen in the explanation of calculating (1 digit)+(1 digit) with carrying, (10 and 1 digit)-(1 digit) with borrowing. And it need to be considered to deal with the vertical format for calculation of (1 digit)+(1 digit) with carrying and (10 and 1 digit)-(1 digit) with borrowing in ${\ll}$Math 1-2${\gg}$, or it need to be considered not to deal with the vertical format for calculation of (1 digit)+(1 digit) with carrying and (10 and 1 digit)-(1 digit) with borrowing in ${\ll}$Math 1-2 workbook${\gg}$ for the consistency.
The public-key cryptosystems such as Diffie-Hellman Key Distribution and Elliptical Curve Cryptosystems are built on the basis of the operations defined in GF(2$^{m}$ ):addition, subtraction, multiplication and multiplicative inversion. It is important that these operations should be computed at high speed in order to implement these cryptosystems efficiently. Among those operations, as being the most time-consuming, multiplicative inversion has become the object of lots of investigation Formant's theorem says $\beta$$^{-1}$ =$\beta$$^{2}$sup m/-2/, where $\beta$$^{-1}$ is the multiplicative inverse of $\beta$$\in$GF(2$^{m}$ ). Therefore, to compute the multiplicative inverse of arbitrary elements of GF(2$^{m}$ ), it is most important to reduce the number of times of multiplication by decomposing 2$^{m}$ -2 efficiently. Among many algorithms relevant to the subject, the algorithm proposed by Itoh and Tsujii[2] has reduced the required number of times of multiplication to O(log m) by using normal basis. Furthermore, a few papers have presented algorithms improving the Itoh and Tsujii's. However they have some demerits such as complicated decomposition processes[3,5]. In this paper, in the case of 2$^{m}$ -2, which is mainly used in practical applications, an efficient algorithm is proposed for computing the multiplicative inverse at high speed by using both the factorization formula x$^3$-y$^3$=(x-y)(x$^2$+xy+y$^2$) and normal basis. The number of times of multiplication of the algorithm is smaller than that of the algorithm proposed by Itoh and Tsujii. Also the algorithm decomposes 2$^{m}$ -2 more simply than other proposed algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.