• Title/Summary/Keyword: 빌딩에너지관리

Search Result 68, Processing Time 0.021 seconds

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings (빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로)

  • Lee, Goon-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.262-268
    • /
    • 2017
  • The energy consumption of buildings is approximately 20.5% of the total energy consumption, and the interest in energy efficiency and low consumption of the building is increasing. Several studies have performed energy analysis and evaluation. Energy analysis and evaluation are effective when applied in the initial design phase. In the initial design phase, however, the energy performance is evaluated using general level information, such as glazing area and surface area. Therefore, the evaluation results of the detailed design stage, which is based on the drawings, including detailed information of the materials and facilities, will be different. Thus far, most studies have reported the analysis and evaluation at the detailed design stage, where detailed information about the materials installed in the building becomes clear. Therefore, it is possible to improve the accuracy of the energy environment analysis if the energy environment information generated during the life cycle of the building can be established and accurate information can be provided in the analysis at the initial design stage using a probability / statistical method. On the other hand, historical data on energy use has not been established in Korea. Therefore, this study performed energy environment analysis to construct the energy environment historical data. As a result of the research, information classification system, information model, and service model for acquiring and providing energy environment information that can be used for building lifecycle information of buildings are presented and used as the basic data. The results can be utilized in the historical data management system so that the reliability of analysis can be improved by supplementing the input information at the initial design stage. If the historical data is stacked, it can be used as learning data in methods, such as probability / statistics or artificial intelligence for energy environment analysis in the initial design stage.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

Status and Prospect of Smart City in the Fourth Industrial Revolution Era (4차 산업혁명시대의 스마트시티 현황과 전망)

  • Kim, Ki-Bong;Kim, Geun-Chae;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.191-197
    • /
    • 2018
  • With a population of more than 10 million people worldwide, MegaCity was only three in 1975, but it is expected to grow to 24 in 2013 and more than 30 in 2025 and more than 3 billion worldwide by 2050 It is expected to be absorbed into smart city. Especially in Asia and Africa, urbanization is expected to proceed rapidly. As the urbanization progresses and the population living in the cities increases, there are various problems such as rapid increase of energy consumption, congestion of traffic, various aging of the infrastructure and the like. As a result, smart city is emerging as a new alternative for solving urban problems. Smart City is rapidly expanding with the development of related technologies and can improve costs, improve urban services, improve quality of life, productivity and sustainability. Therefore, this paper analyzes the size and trend of the domestic and overseas smart city market, and analyzes the smart city related policies, trends and case studies of major countries to see the development status and market of smart city related industries, Present a business utilization model.

Analysis of Causes of and Solutions to the Stack Effect by Vertical Zoning of High-rise Buildings (초고층 건축물 수직조닝별 연돌효과의 원인 및 해결 방안 분석)

  • Shin, Sang Wook;Ryu, Jong Woo;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2021
  • Urban overcrowding has created an explosive supply and demand for high-rise buildings. High-rise buildings are contributing to enhancing the image of the city by serving as focal points, but due to the stack effect, malfunction of elevator doors, difficulties in opening and closing the doors and windows of the outer wall, smoke and odors spreading to the upper floors, noise, energy loss, fire and pollutants have been causing various unexpected problems such as rapid spread of fire. This study classified high-rise buildings according to their vertical zoning, analyzed the causes of and solutions to the stack effect, and derived design and construction methods. Through the initial plan to block the outside air and securing airtightness through precise construction, we sought ways to secure the airtightness inside and outside the building by actively blocking the airflow from the lower floors. In addition, the facility solution can be a measure to reduce the specific phenomena caused by the stack effect, but it should only be applied to the minimum extent because the potential for secondary damage is high. This study emphasized the need for systematic stack effect management by suggesting design and construction measures for each vertical zoning of the causes and countermeasures of the stack effect. It is expected that this study will be helpful not only for design and construction, but also for building maintenance.

A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture (계층 구조에 기반을 둔 스마트 홈 시스템를 위한 스마트 센서 프레임워크의 설계)

  • Chung, Won-Ho;Kim, Yu-Bin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • Smart sensing plays a key role in a variety of IoT applications, and its importance is growing more and more together with the development of artificial intelligence. Therefore the importance of smart sensors cannot be overemphasized. However, most studies related to smart sensors have been focusing on specific application purposes, for example, security, energy saving, monitoring, and there are not much effort on researches on how to efficiently configure various types of smart sensors to be needed in the future. In this paper, a component-based framework with hierarchical structure for efficient construction of smart sensor is proposed and its application to smart home is designed and implemented. The proposed method shows that various types of smart sensors to be appeared in the near future can be configured through the design and development of necessary components within the proposed software framework. In addition, since it has a layered architecture, the configuration of the smart sensor can be expanded by inserting the internal or external layers. In particular, it is possible to independently design the internal and external modules when designing an IoT application service through connection with the external device layer. A small-scale smart home system is designed and implemented using the proposed method, and a home cloud operating as an external layer, is further designed to accommodate and manage multiple smart homes. By developing and thus adding the components of each layer, it will be possible to efficiently extend the range of applications such as smart cars, smart buildings, smart factories an so on.

Independent I/O Relay Class Design Using Modbus Protocol for Embedded Systems

  • Kim, Ki-Su;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • Communication between system modules is applied using the Modbus protocol in industrial sites including smart factories, industrial drones, building energy management systems, PLCs, ships, trains, and airplanes. The existing Modbus was used for serial communication, but the recent Modbus protocol is used for TCP/IP communication.The Modbus protocol supports RTU, TCP and ASCII, and implements and uses protocols in embedded systems. However, the transmission I/O devices for RTU, TCP, and ASCII-based protocols may differ. For example, RTU and ASCII communications transmit on a serial-based communication protocol, but in some cases, Ethernet TCP/IP transmission is required. In particular, since the C language (object-oriented) is used in embedded systems, the complexity of source code related to I/O registers increases. In this study, we designed software that can logically separate I/O functions from embedded devices, and designed the execution logic of each instance requiring I/O processing through a delegate class instance with Modbus RTU, TCP, and ASCII protocol generation. We designed and experimented with software that can separate communication I/O processing and logical execution logic for each instance.