• Title/Summary/Keyword: 빈발패턴탐사

Search Result 42, Processing Time 0.031 seconds

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

Extracting Common Structure of Semistructured data Using mining frequent patterns (빈발 패턴 탐사 기법을 이용한 반구조적 데이터로부터의 공통구조 추출)

  • 이영언;문봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.302-304
    • /
    • 2000
  • 인터넷의 발달로 웹에는 엄청난 데이터가 존재하나, 불규칙적인 구조를 이루고 있는 반구조적 데이터가 대부분이다. 이러한 반구조적 데이터는 데이터들간의 어떤 정확하게 정해진 구조를 갖고 있진 않지만 불완전하고 불규칙한 구조 정보를 포함하고 있는 것으로, 데이터들 간의 관계를 규명할 수 있는 공통 구조 정보를 추출하여 효과적으로 구조화시킴으로써 정보로서의 가치를 높일 필요성이 대두되게 되었다. 또, 데이터 처리 과정에서 기존의 잘 정의된 구조를 가진 데이터베이스의 장점을 수용하기 위해서는 반구조적 데이터 집합의 불완전한 구조 정보로부터 공통 구조를 추출하는 것이 요구된다. 본 연구에서는 후보 항목 집합의 생성이 없는 빈발 패턴 탐사 기법을 사용하여 반구조적 데이터 집합으로부터 공통구조를 추출하고자 한다.

  • PDF

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

An Open Map API based-Prototype Utilizing Frequent Pattern Mining Technique for Efficient Service of Customized Land Information (맞춤형 국토정보의 효과적 제공을 위한 빈발 패턴 탐사 기법을 활용한 오픈맵 API 기반 프로토타입)

  • Lee, Dong-Gyu;Yi, Gyeong-Min;Shin, Dong-Mun;Kim, Jae-Chul;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.95-99
    • /
    • 2010
  • Spatial information systems have developed in order to provide users with customized land information in u-City environments. The spatial information systems can detect spatial information for users anytime anywhere. Information which is analyzed by data mining techniques can be offered for other users. Therefore, we propose open map API-based prototype which utilizes frequent pattern mining technique. Proposed prototype can mine interesting trip routes and unknown attractions in location data of geophoto. Also, proposed prototype is the first attempt which analyzes spatial patterns can be represented on a map which is selected by users. Our prototype can be applied to the smart phone like mobile devices.

Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis (심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류)

  • Noh, Gi-Yeong;Kim, Wuon-Shik;Lee, Hun-Gyu;Lee, Sang-Tae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1031-1040
    • /
    • 2004
  • Electrocardiogram being the recording of the heart's electrical activity provides valuable clinical information about heart's status. Many re-searches have been pursued for heart disease diagnosis using ECG so far. However, electrocardio-graph uses foreign diagnosis algorithm due to inaccuracy of diagnosis results for a heart disease. This paper suggests ECG data collection, data preprocessing and heart disease pattern classification using data mining. This classification technique is the FB(Frequent pattern Bayesian) classifier and is a combination of two data mining problems, naive bayesian and frequent pattern mining. FB uses Product Approximation construction that uses the discovered frequent patterns. Therefore, this method overcomes weakness of naive bayesian which makes the assumption of class conditional independence.

Discovery of Frequent Traversal Patterns from Weighted Traversals and Performance Enhancement by Traversal Split (가중치 순회로부터 빈발 순회패턴의 탐사 및 순회분할을 통한 성능향상)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.940-948
    • /
    • 2007
  • Many real world problems can be modeled as a graph and traversals on the graph. The structure of Web pages can be represented as a graph, for example, and user's navigation paths on the Web pages can be model as a traversal on the graph. It is interesting to discover valuable patterns, such as frequent patterns, from such traversals. In this paper, we propose an algorithm to discover frequent traversal patterns when a directed graph and weighted traversals on the graph are given. Furthermore, we propose a performance enhancement by traversal split and then verify it through experiments.

Discovery of Frequent Sequence Pattern in Moving Object Databases (이동 객체 데이터베이스에서 빈발 시퀀스 패턴 탐색)

  • Vu, Thi Hong Nhan;Lee, Bum-Ju;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.179-186
    • /
    • 2008
  • The converge of location-aware devices, GIS functionalities and the increasing accuracy and availability of positioning technologies pave the way to a range of new types of location-based services. The field of spatiotemporal data mining where relationships are defined by spatial and temporal aspect of data is encountering big challenges since the increased search space of knowledge. Therefore, we aim to propose algorithms for mining spatiotemporal patterns in mobile environment in this paper. Moving patterns are generated utilizing two algorithms called All_MOP and Max_MOP. The first one mines all frequent patterns and the other discovers only maximal frequent patterns. Our proposed approach is able to reduce consuming time through comparison with DFS_MINE algorithm. In addition, our approach is applicable to location-based services such as tourist service, traffic service, and so on.

Sequence Pattern Mining Using Meaning-based Transaction Structure for USN system (USN 환경에서 의미 기반 트랜잭션 구조를 이용한 순차 패턴 탐사 기법)

  • Choi, Pilsun;Kang, Donghyun;Kim, Hwan;Kim, Daein;Hwang, Buhyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1105-1108
    • /
    • 2012
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. USN 환경에서 발생하는 스트림 데이터는 시간 속성을 갖는 이벤트들의 집합으로 표현할 수 있으며 순차 패턴 탐사 기법을 이용하여 유용한 정보를 탐사할 수 있다. 그러나 스트림 데이터 환경에서는 데이터가 무한하고 연속적으로 발생하기 때문에 모든 데이터를 저장하여 패턴을 탐사하는 기법을 적용하는 데는 문제가 있다. 이 논문에서는 향상된 데이터 처리방식을 사용하여 순차패턴을 탐사하는 스트림 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 의미 단위의 가변적 윈도우를 사용하여 스트림 데이터로부터 트랜잭션을 생성하고 이 트랜잭션들의 집합을 해시와 슬라이딩 윈도우를 사용하여 스트림 데이터의 순차 패턴을 탐사한다. 이를 이용한 제안 기법은 실시간 시스템에 적합하게 데이터 저장 공간 사용의 효율성을 높이고 신속하게 유용한 패턴을 탐사할 수 있다.

KISS Korea Computer Congress 2007 (이동 객체의 패턴 탐사를 위한 시공간 데이터 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.153-158
    • /
    • 2007
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는

  • PDF

Location Generalization Method of Moving Object using $R^*$-Tree and Grid ($R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.231-242
    • /
    • 2007
  • The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on $R^*$-Tree and Area Grid Hash Table(AGHT) in preprocessing stage of pattern mining.

  • PDF