• Title/Summary/Keyword: 빈발구조추출

Search Result 20, Processing Time 0.021 seconds

Extracting Common Structure of Semistructured data Using mining frequent patterns (빈발 패턴 탐사 기법을 이용한 반구조적 데이터로부터의 공통구조 추출)

  • 이영언;문봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.302-304
    • /
    • 2000
  • 인터넷의 발달로 웹에는 엄청난 데이터가 존재하나, 불규칙적인 구조를 이루고 있는 반구조적 데이터가 대부분이다. 이러한 반구조적 데이터는 데이터들간의 어떤 정확하게 정해진 구조를 갖고 있진 않지만 불완전하고 불규칙한 구조 정보를 포함하고 있는 것으로, 데이터들 간의 관계를 규명할 수 있는 공통 구조 정보를 추출하여 효과적으로 구조화시킴으로써 정보로서의 가치를 높일 필요성이 대두되게 되었다. 또, 데이터 처리 과정에서 기존의 잘 정의된 구조를 가진 데이터베이스의 장점을 수용하기 위해서는 반구조적 데이터 집합의 불완전한 구조 정보로부터 공통 구조를 추출하는 것이 요구된다. 본 연구에서는 후보 항목 집합의 생성이 없는 빈발 패턴 탐사 기법을 사용하여 반구조적 데이터 집합으로부터 공통구조를 추출하고자 한다.

  • PDF

Mining of Frequent Structures over Streaming XML Data (스트리밍 XML 데이터의 빈발 구조 마이닝)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The basic research of context aware in ubiquitous environment is an internet technique and XML. The XML data of continuous stream type are popular in network application through the internet. And also there are researches related to query processing for streaming XML data. As a basic research to efficiently query, we propose not only a labeled ordered tree model representing the XML but also a mining method to extract frequent structures from streaming XML data. That is, XML data to continuously be input are modeled by a stream tree which is called by XFP_tree and we exactly extract the frequent structures from the XFP_tree of current window to mine recent data. The proposed method can be applied to the basis of the query processing and index method for XML stream data.

Frequent Patten Tree based XML Stream Mining (빈발 패턴 트리 기반 XML 스트림 마이닝)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.673-682
    • /
    • 2009
  • XML data are widely used for data representation and exchange on the Web and the data type is an continuous stream in ubiquitous environment. Therefore there are some mining researches related to the extracting of frequent structures and the efficient query processing of XML stream data. In this paper, we propose a mining method to extract frequent structures of XML stream data in recent window based on the sliding window. XML stream data are modeled as a tree set, called XFP_tree and we quickly extract the frequent structures over recent XML data in the XFP_tree.

Frequent Structure Extraction of XML based on Trigger (트리거 기반 XML 빈발 구조 추출)

  • Hwang, Jeong Hee
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.1179-1180
    • /
    • 2011
  • 유비쿼터스 컴퓨팅 환경에서 무한의 연속적으로 전송되는 데이터에 대한 처리가 요구되고 있다. 본 논문에서는 연속적이고 빠르게 발생하는 스트림 데이터로부터 유용한 정보를 발견하기 위한 기반 연구로써 트리거를 이용한 슬라이딩 윈도우 기반의 XML 빈발 구조 추출 방법을 제안한다.

Clustering XML Documents Considering The Weight of Large Items in Clusters (클러스터의 주요항목 가중치 기반 XML 문서 클러스터링)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.1-8
    • /
    • 2007
  • As the web document of XML, an exchange language of data in the advanced Internet, is increasing, a target of information retrieval becomes the web documents. Therefore, there we researches on structure, integration and retrieval of XML documents. This paper proposes a clustering method of XML documents based on frequent structures, as a basic research to efficiently process query and retrieval. To do so, first, trees representing XML documents are decomposed and we extract frequent structures from them. Second, we perform clustering considering the weight of large items to adjust cluster creation and cluster cohesion, considering frequent structures as items of transactions. Third, we show the excellence of our method through some experiments which compare which the previous methods.

Feature selection and frequent pattern analysis in protein motif sequence (모티프 서열에서의 특징추출 및 빈발패턴 분석)

  • Kim, Dae-Sung;Lee, Bum-Ju;Ryu, Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.10-13
    • /
    • 2007
  • 모티프는 진화과정을 거치면서 단백질 서열상에서 부분적으로 높게 보존된 지역을 의미한다. 이러한 모티프는 단백질의 기능과 구조를 예측하거나 생물학적으로 관련성이 있는 단백질의 공통적인 특성을 기술하는데 사용된다. 또한, 모티프와 단백질 서열의 상관관계는 생물학적 기능 예측에 필수적이며, 이러한 예측 문제는 모티프 검색을 통해 서열에 존재하는 빈발한 서열패턴과 구조패턴을 통해 단백질 서열에 대한 분석이 가능하다. 이 논문에서는 단백질 서열에 존재하는 2차 구조 특성과 빈발패턴을 검색하고 추출된 정보를 이용하여 단백질 기능 분류에 활용하고자 한다.

빈발 패턴 네트워크에서 연관 규칙 발견을 위한 아이템 클러스터링

  • O, Gyeong-Jin;Jeong, Jin-Guk;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.321-328
    • /
    • 2007
  • 데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.

  • PDF

Association Rule Discovery using TID List Table (TID 리스트 테이블을 이용한 연관 규칙 탐사)

  • Chai, Duck-Jin;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • In this paper, we propose an efficient algorithm which generates frequent itemsets by only one database scanning. A frequent itemset is subset of an itemset which is accessed by a transaction. For each item, if informations about transactions accessing the item are exist, it is possible to generate frequent itemsets only by the extraction of items haying an identical transaction ID. Proposed method in this paper generates the data structure which stores transaction ID for each item by only one database scanning and generates 2-frequent itemsets by using the hash technique at the same time. k(k$\geq$3)-frequent itemsets are simply found by comparing previously generated data structure and transaction ID. Proposed algorithm can efficiently generate frequent itemsets by only one database scanning .

An Efficient Algorithm for mining frequent itemsets using L2-tree (L2-tree를 이용한 효율적인 빈발항목 집합 탐사)

  • 박인창;장중혁;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.259-261
    • /
    • 2002
  • 데이터마이닝 분야에서 빈발항목집합 탐사에 관한 연구는 활발히 진행되어 왔지만 여전히 많은 메모리 공간과 시간을 필요로 한다. 특히 apriori 알고리즘에 기반한 방법들은 긴 패턴이 생성될수록 지수적으로 시간과 공간이 증가한다. 최근에 발표된 fp-growth는 일반적인 데이터 집합에서 우수한 성능을 보이나 희소 데이터 집합에서 효율적인 성능을 보여주지 못한다. 본 논문에서는 길이가 2인 빈발항목집합 L2에 기반한 L2-tree 구조를 제안한다. 또한 L2-tree에서 빈발항목집합을 탐사하는 L2-traverse 알고리즘을 제안한다. L2-tree는 L2를 기반으로 하기 때문에 L2가 상대적으로 적은 희소 데이터 집합 환경에서 적은 메모리 공간을 사용하게 된다. L2-traverse 알고리즘은 별도의 추출 데이터베이스를 생성하는 FP-growth와 달리 단순히 L2-tree를 오직 한번의 깊이 우선 탐사를 통해 빈발항목집합을 찾는다. 최적화 기법으로써 길이가 3인 빈발항목집합 L3가 되지 않는 L2 패턴들을 미리 제거하는 방법으로 C3-traverse 알고리즘을 제안하며 실험을 통해 기존 알고리즘과 비교 검증한다.

  • PDF

A Method of Frequent Structure Detection Based on Active Sliding Window (능동적 슬라이딩 윈도우 기반 빈발구조 탐색 기법)

  • Hwang, Jeong-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • In ubiquitous computing environment, rising large scale data exchange through sensor network with sharply growing the internet, the processing of the continuous stream data is required. Therefore there are some mining researches related to the extracting of frequent structures and the efficient query processing of XML stream data. In this paper, we propose a mining method to extract frequent structures of XML stream data in recent window based on the active window sliding using trigger rule. The proposed method is a basic research to control the stream data flow for data mining and continuous query by trigger rules.