• Title/Summary/Keyword: 빅데이터 분석 플랫폼

Search Result 344, Processing Time 0.033 seconds

A Study on Medical Information Platform Based on Big Data Processing and Edge Computing for Supporting Automatic Authentication in Emergency Situations (응급상황에서 자동인증지원을 위한 빅데이터 처리 및 에지컴퓨팅 기반의 의료정보플랫폼 연구)

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.87-95
    • /
    • 2022
  • Recently, with the development of smart technology, in medical information platform, patient's biometric data is measured in real time and accumulated into database, and it is possible to determine the patient's emergency situations. Medical staff can easily access patient information after simple authentication using a mobile terminal. However, in accessing medical information using the mobile terminal, it is necessary to study authentication in consideration of the patient situations and mobile terminal. In this paper, we studied on medical information platforms based on big data processing and edge computing for supporting automatic authentication in emergency situations. The automatic authentication system that we had studied is an authentication system that simultaneously performs user authentication and mobile terminal authentication in emergency situations, and grants upper-level access rights to certified medical staff and mobile terminal. Big data processing and analysis techniques were applied to the proposed platform in order to determine emergency situations in consideration of patient conditions such as high blood pressure and diabetes. To quickly determine the patient's emergency situations, edge computing was placed in front of the medical information server so that the edge computing determine patient's situations instead of the medical information server. The medical information server derived emergency situation decision values using the input patient's information and accumulated biometric data, and transmit them to the edge computing to determine patient-customized emergency situation. In conclusion, the proposed medical information platform considers the patient's conditions and determine quick emergency situations through big data processing and edge computing, and enables rapid authentication in emergency situations through automatic authentication, and protects patient's information by granting access rights according to the patient situations and the role of the medical staff.

Development of informatics subject education system using cloud-based social platform for maker education (메이커 교육을 위한 클라우드 기반 교육용 소셜 플랫폼을 활용한 정보교과 교육시스템 개발)

  • Yang, Hwan-Geun;Lee, Tae-Wuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.409-412
    • /
    • 2019
  • 본 논문에서는 인공지능과 빅데이터 클라우드 등 다양한 4차 산업혁명시대의 기술과 교육을 융합한 에듀테크를 기초로 하여 에듀테크에 대한 교사의 학습 방향을 제시하며 전체적인 클라우드의 개념 및 분류체계, 교육의 활용을 제시하였고 클라우드 기반 교육용 소셜 플랫폼과 R. M. Gagne(1985)의 9가지 이론을 토대로 정보교과 추상화 단원의 학습 지도안을 설계 후 성취도 평가를 제시하였다. 연구 내용 분석 결과 기술의 발전성과 교육현장에서의 개인정보 교육 및 정보보안 교육의 필요성이 강조되며 확고한 플랫폼 구축과 빅데이터 확보 및 분석하여 개인에게 맞춤형 서비스 제공이 필요하다. 또한 사용자 편의성 극대화 서비스 및 UX 간결이 요구된다. 본 논문을 토대로 에듀테크의 일부분인 클라우드 기반 소셜러닝의 다양하고 체계적인 선행연구 활성화에 시발점이 되었으면 한다.

  • PDF

A Development Method of Framework for Collecting, Extracting, and Classifying Social Contents

  • Cho, Eun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • As a big data is being used in various industries, big data market is expanding from hardware to infrastructure software to service software. Especially it is expanding into a huge platform market that provides applications for holistic and intuitive visualizations such as big data meaning interpretation understandability, and analysis results. Demand for big data extraction and analysis using social media such as SNS is very active not only for companies but also for individuals. However despite such high demand for the collection and analysis of social media data for user trend analysis and marketing, there is a lack of research to address the difficulty of dynamic interlocking and the complexity of building and operating software platforms due to the heterogeneity of various social media service interfaces. In this paper, we propose a method for developing a framework to operate the process from collection to extraction and classification of social media data. The proposed framework solves the problem of heterogeneous social media data collection channels through adapter patterns, and improves the accuracy of social topic extraction and classification through semantic association-based extraction techniques and topic association-based classification techniques.

Service Platform of Regional Smart Tour Ecosystem Support (지역중심의 스마트관광 생태계 지원 서비스 플랫)

  • Weon, Dalsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.31-36
    • /
    • 2018
  • The tourism industry has a great influence on national economy activation. The development of IT technology has enabled the collection and analysis of personal profile information, location information and activity information based on the characteristics, behavior, purchase propensity and interest of tourists. In order to realize this, the implementation of convergence smart tourism information service platform is completed by developing business model, IoT & Big Data integration management system, big data algorithm development and analysis platform in three stages. The underlying technology of the platform and algorithm needs a process of adopting open source, expanding the service element on the basis of it, and then complementing the problem through the test-bed demonstration test that connects the area. Using this platform, it is possible to develop a smart tourism environment that can provide customized services for each tourist by analyzing various information in an integrated manner. Also, it will be possible to improve the life of tourist destination residents and contribute to regional revitalization and job creation through the creation of smart tourism ecosystem focused on the region.

User-specific Food Recommended System Using Data Cleaning (데이터 정제를 통한 딥러닝 기반의 유저 맞춤형 음식추천시스템)

  • Kim, Gyun-Yeop;Kang, Sang-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.578-581
    • /
    • 2020
  • 제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.

  • PDF

차세대 사물인터넷(IoT) 개방형 플랫폼에 관한 연구

  • Lim, Ji-yong;Oh, Am-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1095-1096
    • /
    • 2015
  • 사물인터넷은 초고속 이동통신, 고감도 센서, 빅데이터 등의 발전과 함께 가시화되고 있으며, 사물인터넷의 핵심 요소인 플랫폼 기술이 대두되고 있다. 그러나 기존의 사물인터넷 플랫폼은 서로 다른 산업에 속하는 디바이스 및 응용 프로그램 간의 상호 운용성이 부족한 상황이다. 따라서 본 논문에서는 기존 사물인터넷 플랫폼의 문제점을 파악하고 차세대 개방형 사물인터넷 플랫폼에 대해 분석한다.

  • PDF

Implementation of Cloud-Based Artificial Intelligence Education Platform (클라우드 기반 인공지능 교육 플랫폼 구현)

  • Wi, Woo-Jin;Moon, Hyung-Jin;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.85-92
    • /
    • 2022
  • Demand for big data analysis and AI developers is increasing, but there is a lack of an education base to supply them. In this paper, by developing a cloud-based artificial intelligence education platform, the goal was to establish an environment in which practical practical training can be efficiently learned at low cost at educational institutions and IT companies. The development of the education platform was carried out by planning scenarios for each user, architecture design, screen design, implementation of development functions, and hardware construction. This training platform consists of a containerized workload, service management platform, lecture and development platform for instructors and students, and secured cloud stability through real-time alarm system and age test, CI/CD development environment, and reliability through docker image distribution. The development of this education platform is expected to expand opportunities to enter new businesses in the education field and contribute to fostering working-level human resources in the AI and big data fields.

빅데이터를 활용한 보안로그시스템

  • Jeon, Gyeong-Sik;Lee, Hyeon-Gyeong;Jeon, Sam-Hyeon;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.710-711
    • /
    • 2015
  • 최근 사이버 공격이사회, 국가적 위협으로 대두되고 있다. 최근 신종 악성코드에 의한 A.P.T 공격이 사회적으로 큰 혼란을 야기하고 있다. 이에 따라 기업 내에서 방화벽, IPS, VPN 등의 네트워크 보안 시스템의 통합 관리를 목적으로 하는 통합관제시스템(ESM)의 필요성이 제기되었다. 그러나 기존의 ESM의 방식은 외부에서 내부로 유입되는 트래픽만을 모니터링하는 네트워크 기반 공격 탐지기법을 사용하기 때문에, 외부 사이버 공격만을 차단할 수 있다는 한계점을 가지고 있다. 따라서 본 연구는 주요 IT 기반시설의 네트워크, 시스템, 응용 서비스 등으로부터 발생하는 데이터 및 보안 이벤트 간의 연관성을 분석하여 보안 지능을 향상시키는 빅데이터를 활용한 보안로그시스템을 제안한다. 본 연구에서 제안한 빅데이터를 활용한 보안로그시스템을 통해 분산 기반의 저장/처리 기술 적용하고자 한다.본 기술을 적용한 지능형 정보 분석 플랫폼 구성을 통해, 가용성과 확장성을 확보하여 통합적 보안 관제가 가능하도록 한다. 뿐만 아니라 기업 내로의 악성코드 유입, 감염(전파) 그리고 실시간 모니터링이 가능하여 고객 서비스 만족도가 향상되는 파급효과가 기대된다.

  • PDF

A Study on the Platform Design for Housing Market Analysis (주택시장 분석을 위한 플랫폼 설계에 관한 연구)

  • Lee, Sang-Hun;Oh, Jung-Min
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.445-446
    • /
    • 2017
  • 효과적인 주택정책의 수립을 위해서는 인구, 가구, 주택 수 및 가격 등 다양하고 정확한 데이터가 필요하다. 최근 데이터에 기반한 다양한 의사결정 지원 및 분석시스템이 등장하고 있으며 빅데이터를 통한 분석의 필요성은 꾸준히 대두되고 있다. 본 논문에서는 행정시스템 및 데이터를 기반으로 주택시장을 분석하기 위한 오픈 플랫폼 기반의 통합 플랫폼을 구현하는 것을 목표로 최신 기술 및 요구사항을 반영한 설계적 접근 방법을 제시하는 것을 목적으로 한다.

RHadoop platform for K-Means clustering of big data (빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼)

  • Shin, Ji Eun;Oh, Yoon Sik;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.609-619
    • /
    • 2016
  • RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. In this paper, we implement K-Means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. The main idea introduces a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. We showed that our K-Means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. We also implemented Elbow method with MapReduce for finding the optimum number of clusters for K-Means clustering on large dataset. Comparison with our MapReduce implementation of Elbow method and classical kmeans() in R with small data showed similar results.