• Title/Summary/Keyword: 빅데이터플랫폼

Search Result 483, Processing Time 0.03 seconds

A Plan for Establishing IOT-based Building Maintenance Platform (S-LCC): Focusing a Concept Model on the Function Configuration and Practical Use of Measurement Data (IOT 기반 건축물 유지관리 플랫폼 구축(S-LCC) 방안 : 기능구성과 계측 데이터 활용을 위한 개념 모델을 중심으로)

  • Park, Tae-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.611-618
    • /
    • 2020
  • The reliability of the results of LCC analysis is determined by accurate analytical procedures and energy data from which the uncertainty is removed. Until now, systems that can automatically measure these energy data and produce databases have not been commercialized. Therefore this paper proposes a concept model of an S-LCC platform that can automatically collect and analyze electric energy consumption data of equipment systems using the IOT, which is the core tool in the Fourth Industrial Revolution and operates the equipment system efficiently using the analyzed results. The proposed concept model was developed by the convergence of existing BLCS and IOT and was comprised of five modules: Facility Control Module, LCC Analysis Module, Energy Consumption Control Module, Efficiency Analysis Module, and Maintenance Standard Reestablishment Module. Using the results of LCC analysis deduced from this system, the deterioration condition of an equipment system can be identified in real-time. The results can be used as the baseline data to re-establish standards for the maintenance factor, replacement frequency, and lifetime of existing equipment, and establish new maintenance standards for new equipment. If the S-LCC platform is established, it would increase the reliability of LCC analysis, reduce the labor force for entering data and improve accuracy, and would also change disregarded data into big data with high potential.

A Prediction Model for Agricultural Products Price with LSTM Network (LSTM 네트워크를 활용한 농산물 가격 예측 모델)

  • Shin, Sungho;Lee, Mikyoung;Song, Sa-kwang
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.416-429
    • /
    • 2018
  • Typhoons and floods are natural disasters that occur frequently, and the damage resulting from these disasters must be in advance predicted to establish appropriate responses. Direct damages such as building collapse, human casualties, and loss of farms and fields have more attention from people than indirect damages such as increase of consumer prices. But indirect damages also need to be considered for living. The agricultural products are typical consumer items affected by typhoons and floods. Sudden, powerful typhoons are mostly accompanied by heavy rains and damage agricultural products; this increases the retail price of such products. This study analyzes the influence of natural disasters on the price of agricultural products by using a deep learning algorithm. We decided rice, onion, green onion, spinach, and zucchini as target agricultural products, and used data on variables that influence the price of agricultural products to create a model that predicts the price of agricultural products. The result shows that the model's accuracy was about 0.069 measured by RMSE, which means that it could explain the changes in agricultural product prices. The accurate prediction on the price of agricultural products can be utilized by the government to respond natural disasters by controling amount of supplying agricultural products.

Proposal of Process Model for Research Data Quality Management (연구데이터 품질관리를 위한 프로세스 모델 제안)

  • Na-eun Han
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.51-71
    • /
    • 2023
  • This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.

A Study on the Utilization of Open Learning Platform to Reduce Private Education Cost of Elementary Education (초등교육의 사교육비 절감을 위한 개방형 학습 플랫폼 활용에 관한 연구)

  • Shim, Jae-Young;Kwon, Mee-Rhan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2018
  • STEAM and S / W education in public education are effective in fostering talented people and the talents of the 4th industrial revolution era. It is necessary to expand the teachers for this purpose, to find out and apply various learning materials, and to improve education environment for fusion talent education. An open learning platform is effective in reducing private education costs and supplementing public education. Especially, it is useful for flip learning combined with classroom (off-line). In this case, teacher's role can be transformed into active teaching activities and research activities, which can speed up normalization of public education and reduce private education.In particular, the core functions of the MOOC platform for elementary education are 'creative instructional design and contents development function', 'digital teaching and learning curation', 'big data based learner customization', 'learning participation' flip learning and social Learning function.Through this study, it is expected that discussion on the introduction of MOOC for career and admission education for adolescents including elementary education will be established and the Korean youth MOOC platform will be developed and developed as a global advanced model of education democratization.

Design and Implementation of HDFS Data Encryption Scheme Using ARIA Algorithms on Hadoop (하둡 상에서 ARIA 알고리즘을 이용한 HDFS 데이터 암호화 기법의 설계 및 구현)

  • Song, Youngho;Shin, YoungSung;Chang, Jae-Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Due to the growth of social network systems (SNS), big data are realized and Hadoop was developed as a distributed platform for analyzing big data. Enterprises analyze data containing users' sensitive information by using Hadoop and utilize them for marketing. Therefore, researches on data encryption have been done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES encryption algorithm, the international standard of data encryption. Meanwhile, Korean government choose ARIA algorithm as a standard data encryption one. In this paper, we propose a HDFS data encryption scheme using ARIA algorithms on Hadoop. First, the proposed scheme provide a HDFS block splitting component which performs ARIA encryption and decryption under the distributed computing environment of Hadoop. Second, the proposed scheme also provide a variable-length data processing component which performs encryption and decryption by adding dummy data, in case when the last block of data does not contains 128 bit data. Finally, we show from performance analysis that our proposed scheme can be effectively used for both text string processing applications and science data analysis applications.

A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images (CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구)

  • Lee, Hongrae;Kim, Youngtae;Seo, Byung-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV protects people and assets safely by identifying dangerous situations and responding promptly. However, it is difficult to continuously monitor the increasing number of CCTV images. For this reason, there is a need for a device that continuously monitors CCTV images and notifies when abnormal behavior occurs. Recently, many studies using artificial intelligence models for image data analysis have been conducted. This study simultaneously learns spatial and temporal characteristic information between image data to classify various abnormal behaviors that can be observed in CCTV images. As an artificial intelligence model used for learning, we propose a multi-classification deep learning model that combines an end-to-end 3D convolutional neural network(CNN) and ResNet.

  • PDF

Analyzing Global Startup Trends Using Google Trends Keyword Big Data Analysis: 2017~2022 (Google Trends 의 키워드 빅데이터 분석을 활용한 글로벌 스타트업 트렌드 분석: 2017~2022 )

  • Jaeeog Kim;Byunghoon Jeon
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.19-34
    • /
    • 2023
  • In order to identify the trends and insights of 'startups' in the global era, we conducted an in-depth trend analysis of the global startup ecosystem using Google Trends, a big data analysis platform. For the validity of the analysis, we verified the correlation between the keywords 'startup' and 'global' through BIGKinds. We also conducted a network analysis based on the data extracted using Google Trends to determine the frequency of searches for the keyword or term 'startup'. The results showed a strong positive linear relationship between the keywords, indicating a statistically significant correlation (correlation coefficient: +0.8906). When exploring global startup trends using Google Trends, we found a terribly similar linear pattern of increasing and decreasing interest in each country over time, as shown in Figure 4. In particular, startup interest was low in the range of 35 to 76 from mid-2020 due to the COVID-19 pandemic, but there was a noticeable upward trend in startup interest after March 2022. In addition, we found that the interest in startups in each country except South Korea is very similar, and the related topics are startup company, technology, investment, funding, and keyword search terms such as best startup, tech, business, invest, health, and fintech are highly correlated.

  • PDF

Big-Data Traffic Analysis for the Campus Network Resource Efficiency (학내 망 자원 효율화를 위한 빅 데이터 트래픽 분석)

  • An, Hyun-Min;Lee, Su-Kang;Sim, Kyu-Seok;Kim, Ik-Han;Jin, Seo-Hoon;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.541-550
    • /
    • 2015
  • The importance of efficient enterprise network management has been emphasized continuously because of the rapid utilization of Internet in a limited resource environment. For the efficient network management, the management policy that reflects the characteristics of a specific network extracted from long-term traffic analysis is essential. However, the long-term traffic data could not be handled in the past and there was only simple analysis with the shot-term traffic data. However, as the big data analytics platforms are developed, the long-term traffic data can be analyzed easily. Recently, enterprise network resource efficiency through the long-term traffic analysis is required. In this paper, we propose the methods of collecting, storing and managing the long-term enterprise traffic data. We define several classification categories, and propose a novel network resource efficiency through the multidirectional statistical analysis of classified long-term traffic. The proposed method adopted to the campus network for the evaluation. The analysis results shows that, for the efficient enterprise network management, the QoS policy must be adopted in different rules that is tuned by time, space, and the purpose.

A Blockchain Network Construction Tool and its Electronic Voting Application Case (블록체인 자동화도구 개발과 전자투표 적용사례)

  • AING TECKCHUN;KONG VUNGSOVANREACH;Okki Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.151-159
    • /
    • 2021
  • Construction of a blockchain network needs a cumbersome and time consuming activity. To overcome these limitations, global IT companies such as Microsoft are providing cloud-based blockchain services. In this paper, we propose a blockchain-based construction and management tool that enables blockchain developers, blockchain operators, and enterprises to deploy blockchain more comfortably in their infrastructure. This tool is implemented using Hyperledger Fabric, one of the famous private blockchain platforms, and Ansible, an open-source IT automation engine that supports network-wide deployment. Instead of complex and repetitive text commands, the tool provides a user-friendly web dashboard interface that allows users to seamlessly set up, deploy and interact with a blockchain network. With this proposed solution, blockchain developers, operators, and blockchain researchers can more easily build blockchain infrastructure, saving time and cost. To verify the usefulness and convenience of the proposed tool, a blockchain network that conducts electronic voting was built and tested. The construction of a blockchain network, which consists of writing more than 10 setting files and executing commands over hundreds of lines, can be replaced with simple input and click operations in the graphical user interface, saving user convenience and time. The proposed blockchain tool will be used to build trust data infrastructure in various fields such as food safety supply chain construction in the future.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.