• Title/Summary/Keyword: 비 선형 매핑

Search Result 55, Processing Time 0.026 seconds

Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks (생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거)

  • Wang, Yao;Jeong, Woojin;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.43-54
    • /
    • 2018
  • Images taken in haze weather are characteristic of low contrast and poor visibility. The process of reconstructing clear-weather image from a hazy image is called dehazing. The main challenge of image dehazing is to estimate the transmission map or depth map for an input hazy image. In this paper, we propose a single image dehazing method by utilizing the Generative Adversarial Network(GAN) for accurate depth map estimation. The proposed GAN model is trained to learn a nonlinear mapping between the input hazy image and corresponding depth map. With the trained model, first the depth map of the input hazy image is estimated and used to compute the transmission map. Then a guided filter is utilized to preserve the important edge information of the hazy image, thus obtaining a refined transmission map. Finally, the haze-free image is recovered via atmospheric scattering model. Although the proposed GAN model is trained on synthetic indoor images, it can be applied to real hazy images. The experimental results demonstrate that the proposed method achieves superior dehazing results against the state-of-the-art algorithms on both the real hazy images and the synthetic hazy images, in terms of quantitative performance and visual performance.

A study on the connected-digit recognition using MLP-VQ and Weighted DHMM (MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구)

  • Chung, Kwang-Woo;Hong, Kwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.96-105
    • /
    • 1998
  • The aim of this paper is to propose the method of WDHMM(Weighted DHMM), using the MLP-VQ for the improvement of speaker-independent connect-digit recognition system. MLP neural-network output distribution shows a probability distribution that presents the degree of similarity between each pattern by the non-linear mapping among the input patterns and learning patterns. MLP-VQ is proposed in this paper. It generates codewords by using the output node index which can reach the highest level within MLP neural-network output distribution. Different from the old VQ, the true characteristics of this new MLP-VQ lie in that the degree of similarity between present input patterns and each learned class pattern could be reflected for the recognition model. WDHMM is also proposed. It can use the MLP neural-network output distribution as the way of weighing the symbol generation probability of DHMMs. This newly-suggested method could shorten the time of HMM parameter estimation and recognition. The reason is that it is not necessary to regard symbol generation probability as multi-dimensional normal distribution, as opposed to the old SCHMM. This could also improve the recognition ability by 14.7% higher than DHMM, owing to the increase of small caculation amount. Because it can reflect phone class relations to the recognition model. The result of my research shows that speaker-independent connected-digit recognition, using MLP-VQ and WDHMM, is 84.22%.

  • PDF

Implementation of High-radix Modular Exponentiator for RSA using CRT (CRT를 이용한 하이래딕스 RSA 모듈로 멱승 처리기의 구현)

  • 이석용;김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 2000
  • In a methodological approach to improve the processing performance of modulo exponentiation which is the primary arithmetic in RSA crypto algorithm, we present a new RSA hardware architecture based on high-radix modulo multiplication and CRT(Chinese Remainder Theorem). By implementing the modulo multiplier using radix-16 arithmetic, we reduced the number of PE(Processing Element)s by quarter comparing to the binary arithmetic scheme. This leads to having the number of clock cycles and the delay of pipelining flip-flops be reduced by quarter respectively. Because the receiver knows p and q, factors of N, it is possible to apply the CRT to the decryption process. To use CRT, we made two s/2-bit multipliers operating in parallel at decryption, which accomplished 4 times faster performance than when not using the CRT. In encryption phase, the two s/2-bit multipliers can be connected to make a s-bit linear multiplier for the s-bit arithmetic operation. We limited the encryption exponent size up to 17-bit to maintain high speed, We implemented a linear array modulo multiplier by projecting horizontally the DG of Montgomery algorithm. The H/W proposed here performs encryption with 15Mbps bit-rate and decryption with 1.22Mbps, when estimated with reference to Samsung 0.5um CMOS Standard Cell Library, which is the fastest among the publications at present.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.