• Title/Summary/Keyword: 비환기형

Search Result 120, Processing Time 0.021 seconds

A Study on the Wind Pressure Coefficients of Flat-type Apartment Complexes Considering Building Layout and Aspect Ratio (판상형 공동주택의 동 배치 및 종횡비에 따른 풍압계수 특성에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.153-159
    • /
    • 2021
  • In this study, basic data that can be referenced for ventilation modeling was presented by analyzing the characteristics of wind pressure coefficients(Cp) according to wind direction angles under conditions of different building layouts and aspect ratios through CFD (Computational Fluid Dynamics) analysis for flat-type apartment complexes. In the case of a wind direction angle of 0°, Cp distribution in the form of an inverted S-shape was shown on the front of the building located on the windward side. And Cp corresponding to the lowest floor, the uppermost floor, and the two inflection points showed relatively close values regardless of the height of the building. The inflection point of the low-rise part was formed at a height of about 11m, and the height of the high-rise part could be calculated through a trend formula proportional to the height of the building. It was confirmed that the averaged Cp value can be applied in most conditions except for the wind direction angle of 45 degrees.

Experimental study on vehicle-induced unsteady flow in tunnel (터널에서 차량의 운행에 의해 생성되는 비정상 유동에 대한 실험적 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.411-417
    • /
    • 2009
  • The thermo-flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, piston effect is one of primary causes for formation of air flow in road tunnel and has an effect on initial direction of smoke flow in tunnel fire. In this study to analyze the unsteady flow in the tunnel caused by the run of vehicle, the experimental study of vehicle-induced unsteady flow on a reduced-scale model tunnel is presented. While the three types of vehicle shape such as basic type of rectangular shape, diamond-head type and stair-tail type are changed, the pressure and air velocity variations with time are measured. The rising ratio of pressure and velocity are in order of "basic type of rectangular shape > stair-tail type > diamond-head type". The experimental results would be good data for development of a numerical method on the vehicle-induced unsteady tunnel flow.

Comparison of Heat Transfer Performance and Pressure Drop of Fin-Tube and Aluminum Heat Exchangers (핀-튜브 열교환기와 알루미늄 열교환기의 전열성능과 압력강하 특성비교)

  • Chang, Keun-Sun;Lee, Hyun-Su;Kim, Jae-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.222-229
    • /
    • 2009
  • This study presents comparison of heat transfer and air side friction characteristics in a condenser condition of air conditioner between Louver fin-tube heat exchangers and aluminum parallel heat exchangers. All experiments are performed using an air-enthalpy type calorimeter, which is designed based on the method described in ASHRAE standards. The air velocities crossing the heat exchanger tubes are varied from 0.7 to 1.6 m/s with 0.3 m/s interval, maintaining air dry temperature and relative humidity at $20^{\circ}C$ and 60% respectively. Water temperature and flow rate inside the tube are $70^{\circ}C$ and 10 LPM, respectively. Experimental results show that the heat transfer performances of aluminum heat exchangers are 17-163% higher than those of Louver fin-tube heat exchangers based on the data per unit volume, mass, and heat transfer area, whereas air side pressure drops of aluminum heat exchangers are 19-81% lower.

Studies on Growth Responses of Tomato and Environmental Characteristics of Various Rain Shelter Types (간이시설 형태별 환경특성과 토마토 생장반응 연구)

  • 김현환;조삼증;이시영;권영삼;신만균;남윤일;최규홍
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 1993
  • The purpose of this study was to investigate crop growth responses under various rain shelters which were devised to improve the indoor environment in summer season. For developing the proper type of rain shelter, the improved rain shelters with the roof of saw - tooth type(saw-tooth type) and 3 span-arch type(improved arch type) were compared with the conventional one with the roof of single arch type(conventional arch type) and no rain shelter (open field ). The results were summarized as follows ; 1. The air temperature in the improved arch type was 4$^{\circ}C$ and 1$^{\circ}C$ lower than those in the conventional arch type and the saw - tooth type, respectively. 2. The air temperature drop by the evaporative cooling + improved drainage was 1.3$^{\circ}C$ which was 0.9$^{\circ}C$lower than that by the improved drainage only. 3. The effect of labour saving in the saw-tooth type was superior to any other type because its frames were used as props and the labour for ventilation was not needed. 4. The highest marketable yield of tomato was 4,897kg/10a in the improved arch type and the total leaf areas which related to photosynthesis was the largest in the saw - tooth type. 5. The improved arch type was proved to be proper to raise yield potential. The effect of the underground environment treatment on the quality and quantity of vegetable showed to be outstanding in the saw- tooth type with the evaporative cooling + improved drainage, and in the improved and conventional arch type with the trickle improved drainage. 6. In conclusion, the saw - tooth type and the improved arch type were proved to be labour saving rain shelters and the indoor environments in both types were better than that in the conventional arch type.

  • PDF

Development of a program to predict the airflow rate and pollutant concentration in complex network-type tunnels (네트워크형 터널의 풍량 및 농도해석 프로그램 개발연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.213-229
    • /
    • 2017
  • Recently, in urban areas there is a tendency to construct more complex network-type tunnels including entrance and exit ramps. At the same time, various one-dimensional programs based on the network theory have been proposed for tunnel ventilation analysis. This paper aims at developing a program that can analyze the ventilation flow rate and pollutants concentration in complex network-type tunnels based on the none hardy-cross method. The flow analysis in the branch was carried out on the basis of the Gradient method, while for the concentration analysis a new logic has been developed to calculate the inflow and outflow concentration automatically in a complex network-type structure. Additionally, in the tunnel segments showing low flow rate, proper grid interval sizes were proposed to reduce numerical error. To verify the applicability of the program, flow rates predicted in the straight tunnels were compared with the classical velocity-diagram method by Stokic and the TVSDM program. The results showed that the errors were within 1%. In addition, the program was applied to the recent ventilation system adopted in the complex network-type urban tunnels.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

Obstructive Ventilatory Impairment as a Risk Factor of Lung Cancer (폐암의 위험인자로서의 폐쇄성 환기장애)

  • Kim, Yeon-Jae;Park, Jae-Yong;Chae, Sang-Cheol;Won, Jun-Hee;Kim, Jeong-Seok;Kim, Chang-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.746-753
    • /
    • 1998
  • Background : Cigarette smoking is closely related to both lung cancer and chronic obstructive pulmonary disease. The incidence of lung cancer is higher in patients with obstructive ventilatory impairment than in patients without obstructive ventilatory impairment regardless of smoking. So, obstructive ventilatory impairment is suspected as an independent risk factor of lung cancer. Methods: For the evaluation of the role of obstructive ventilatory impairment as a risk factor of lung cancer, a total of 73 cases comprising 47 cases of malignant and 26 benign solitary pulmonary nodule were analyzed retrospectively. A comparative study of analysis of forced expiratory volume curves and frequencies of obstructive ventilatory impairment were made between cases with malignant and benign nodules. Results: In comparison of vital capacity and parameters derived from forced expiratory volume curve between two groups. VC, FVC and $FEV_1$ were not significantly different. whereas $FEV_1/FVC%$ and FEF 25-75% showed a significant decrease in the cases with malignant nodule. The frequency of obstructive ventilatory impairment determined by pulmonary function test was significantly higher in the cases with malignant nodule(23.4%) than in benign nodule(3.8%). When the risk for lung cancer was examined by the presence or absence of obstructive ventilatory impairment using the logistic regression analysis, the unadjusted relative risk for the lung cancer of obstructive ventilatory impairment was 17.17. When the effect of smoking and age were considered, the relative risk was to 8.13. Conclusion: These findings suggest that an obstructive ventilatory impairment is a risk factor of lung cancer.

  • PDF

Numerical Analysis of the Effect of Rounded Tube at the Counter Flow Manifold on the Performance of a Heat Exchanger Used in High Temperature and High Pressure System (대향류 매니폴드 내의 튜브 라운드 적용에 따른 고온 고압 열교환기의 성능특성에 관한 수치적 연구)

  • Kim, Sang-Jo;Choi, Byoung-Ik;Kim, Kui-Soon;Son, Chang-Min;Ha, Man-Young;Jeong, Ji-Hwan;Go, Jeong-Sang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.47-55
    • /
    • 2011
  • The present paper deals with numerical analysis to investigate the effect of rounded tube on the pressure drop and heat transfer in a compact tubular heat exchanger designed for high temperature and high pressure system. The pressure drop and heat transfer in the tubular heat exchanger greatly depend on the location of rounded tubes. The effect of locations of the rounded tubes was also analyzed. Three different locations which were tube inlet, tube outlet, and inlet&outlet were considered. In this paper, the tube with a rounded inlet&outlet showed the minimum pressure drop with decreased heat transfer while the tube with a rounded outlet showed better characteristics of pressure drop and heat transfer compared with the results of original model.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.

The Influence of Pretreatment Period, 2-Hydroxynicotinic Acid and Anther Co-pretreatment on Embryo Induction in Isolated Microspore Culture of Capsicum annuum L. (고추의 나출 소포자 배양시 전처리 기간, 2-Hydroxynicotinic Acid 및 약-공동전처리가 소포자배 발생에 미치는 영향)

  • Park Eun-Joon;Kim Jin-Ae;Lee Jong-Suk;Jang In-Chang;Yoon Michung;Chung Sang-Ho;Kim Moonza
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • Microspores were isolated from pepper (Capsicum annuum L.) anthers by using a micro-blender and cultured in modified NLN medium at $25^{\circ}C$. The influence of pretreatment period at $32^{\circ}C$, adding the 2-hydroxynicotinic acid to a pretreatment medium, and co-pretreatment anthers with microscopes on the induction of embryo were examined. Globular and torpedo embryos were observed from 3 weeks after culture. Embryo development was not synchronized within culture. After 4 weeks in culture, in addition to globular and torpedo embryos, cotyledonary embryos were observed. Normal cotylodonary embryos developed into plantlets when transferred to a solid hormone free B5 medium containing $2\%$ sucrose. Embryo yields were significantly higher after 1- and 2-day pretreatment at $32^{\circ}C$. However the development of embryo ceased at the globular or heart stage. In contrast, embryo yields were lower after 3- to 6-day pretreatment at $32^{\circ}C$ and embryo developed at the cotyledonary stage. After adding the 2-hydroxynicotinic acid to anther pretreatment solution, embryo yields were slightly increased. However most embryos occurred were at the globular or heart stage. Co-pretreatment of microspores with anthers was deleterious for embryo induction and development. AS far as we know, this is the first report of success in obtaining high frequency of embryogenesis and plantlets formation from isolated microspores of pepper. Although the culture conditions have to be optimized further, this promising microspore culture system can be used for genetic transformation, selection for dominant and recessive traits as well as for the production of homozygous doubled haploid plants.