• Title/Summary/Keyword: 비행 경로각

Search Result 59, Processing Time 0.033 seconds

Risk Assessment of a Drone Under the Gust and its Precise Flight Simulation (드론의 외풍 환경 비행 안전성 평가 및 정밀 시뮬레이션)

  • Lee, DongYeol;Park, SunHoo;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • The operation and transportation environment for an unmanned aerial vehicle will be completely different from those for the conventional air and ground transportation. The requirement for a traffic management system for its safe operation has been emerging. Accordingly, investigation is being conducted to analyze the danger that unmanned aerial vehicle may encounter during the flight and to provide the countermeasure by the simulation. When the drones operate in an urban environment, they may be affected by the wind around the building. Thus it is essential to predict the influence of the gust and analyze the resulting risk. In this paper, a method for evaluating the safety for a flight mission under the gust is suggested. By using the precise 6-degree-of-freedom flight simulation that is capable of simulating the gust condition, possible deviation from the pre-planned flight path in terms of the attitude orientation will be predicted. A method of quantifying the probability of the flight mission failure will also be presented.

Determination of Waypoints to Maximize the Survivability of UAV against Anti-air Threats (대공위협에 대한 무인기 생존성 최대화 경로점 결정기법)

  • Park, Sanghyuk;Hong, Ju-Hyeon;Ha, Hyun-Jong;Ryoo, Chang-Kyung;Shin, Wonyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper proposes a determination method of waypoints to maximize the survivability of a UAV. Voronoi diagram which is used for the initial selection of waypoint candidates is the most widely used path planning technique to avoid the threat as far as possible when the location and strength of the threat are given. But if threat strength is different each other and flight path is constrained along with straight lines, Voronoi diagram has limitations in real applications. In this study, the initial waypoints obtained from Voronoi diagram are optimized considering the shape of each threat. Here, a waypoint is optimized while adjacent waypoints are fixed. By repeating this localized optimization until whole waypoints are converged, computation time for finding the best waypoints is greatly reduced.

Correction Method of High-precision Signal for Aircraft Automatic Test Equipment Using Least Squares Method (최소자승법을 이용한 비행체 자동점검장비의 고정밀 신호 보정 방안)

  • Lee, Seong-woo;Kim, Dong-hyouk;Kim, Seong-woo;Seo, Min-gi;Lee, Cheol-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.64-69
    • /
    • 2018
  • Automatic test equipment for field maintenance of aircraft mounted equipment is effective for integrated design when operating a small number of aircraft for special purposes. The integrated automatic test equipment identifies commonly used interfaces and is used for branching or generating routes for each unit under test specific inspection. High-precision signals such as RTD, TC, and analog voltage can cause measurement errors due to conduction resistance during signal branching and connection when generating branches and paths. The measurement error caused by the resistance of the wire leads to a lot of restrictions in designing the equipment to be inspected. In this paper, we propose a method of calibrating highly accurate signals of an integrated automatic inspection equipment that minimizes measurement errors of analog voltage and high - precision signals.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.

Optimal Terminal Guidance Law for BTT Missiles Considering Impact-Angle Constraint of Stationary Target (정지 표적의 표적 충돌각을 고려한 BTT 미사일의 최적 종말 유도 법칙 설계)

  • Yeom, Joon-Hyung;Park, Sung-Min;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1737_1738
    • /
    • 2009
  • 미사일의 표적 충돌각을 원하는 각도로 제어하는 것은 표적의 취약점을 공략하기 위해 필수적인 기술이다. 표적 타격 지점 및 충돌각을 고려하지 않으면 타격에 성공하였다고 하더라도 표적의 방어 능력이 좋거나 신관이 충돌각에 민감하면 표적의 효과적인 파괴에 실패할 수도 있다. 이런 경우 유도 미사일의 종말 유도 효율을 증가시키기 위해 미사일이 표적을 타격하는 각도인 표적 충돌각(Impact Angle)을 제어할 수 있으면 적정 비행경로의 설정에 유리하고 우회공격 등이 가능할 뿐 아니라 미사일 탄두의 효과를 극대화할 수 있다. 하지만 이러한 장점을 갖는 표적 충돌각 유도 기법에 대한 연구는 아직 활발하게 행해지고 있지는 못하다. 기존 연구 결과들은 2차원 평면상에서의 충돌각 제어만을 다루고 있어, 요와 피치 채널의 커플링 문제가 있는 BTT 미사일에 적용하기가 어렵다는 문제점을 갖고 있다. 또한 미사일 동역학을 무시하거나 단순화하여 문제를 풀고 있기 때문에 실제 상황에 적용이 어렵다는 단점이 있다. 본 논문에서는 3차원 공간상에서의 롤 명령을 모두 포함하면서 동시에 미사일 자동조종제어기, 핀 구동기 동역학을 모두 고려한 새로운 BTT 미사일의 표적 충돌각 유도 기법을 제안한다.

  • PDF

Comparative Analysis of Focal Length Bias for Three Different Line Scanners (초점거리 편의가 지상 정확도에 미치는 영향 비교 연구 - 세가지 라인 스캐너를 대상으로 -)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.363-371
    • /
    • 2014
  • Most space-borne optical scanning systems adopt linear arrayconfigurations. The well-knownthree different types of space-borne sensors arealong-track line scanner, across-track linescanner, and three line scanner. To acquire accurate location information of an object on the ground withthose sensors, the exterior and interior orientation parameters are critical factors for both of space-borne and airborne missions. Since the imaging geometry of sensors mightchange time to time due to thermal influence, vibration, and wind, it is very important to analyze the Interior Orientation Parameters (IOP) effects on the ground. The experiments based on synthetic datasets arecarried out while the focal length biases are changing. Also, both high and low altitudes of the imagingsensor were applied. In case with the along-track line scanner, the focal length bias caused errors along the scanline direction. In the other case with the across-track one, the focal length bias caused errors alongthe scan line and vertical directions. Lastly, vertical errors were observed in the case ofthree-line scanner. Those results from this study will be able to provide the guideline for developing new linearsensors, so as for improving the accuracy of laboratory or in-flight sensor calibrations.

Performance Analysis of Load Control Model for Navigation/Guidance System on Flying Object (비행 물체의 유도제어 시스템 설계를 위한 하중(중력수) 제어 모델의 성능분석)

  • Wang, Hyun-Min;Woo, Kwang-Joon;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.87-96
    • /
    • 2009
  • In conventional method, flight model is discribed to differential equation by linealization of nonlinear object motion equation. As state equation from differential equation of moving object, the controller is designed by transfer functions of each module under discrimination of stability criteria. But this conventional method is designed under limitation of nonlinearity from object's shape and speed. In other word, The greater part of guidance/navigation system was satisfied with the result of good performance for normal figure of flight object, not sudden changed flight condition, not high speed. But it is not able to give full play to its ability on flight object which has abnormal figure, sudden changeable motion, high speed. Therefore, in this paper was presented performance analysis of load control model for navigation/guidance system on flying object being uncertainty, non-linear like abnormal figure, sudden changeable motion, high speed and is presented method of trajectory control(controllability) ahead of controllability and stability to achieve flight mission. In other word, this paper shows the first step of Min-design method and flight control model.

Flight trajectory generation through post-processing of launch vehicle tracking data (발사체 추적자료 후처리를 통한 비행궤적 생성)

  • Yun, Sek-Young;Lyou, Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.53-61
    • /
    • 2014
  • For monitoring the flight trajectory and the status of a launch vehicle, the mission control system in NARO space center process data acquired from the ground tracking system, which consists of two tracking radars, four telemetry stations, and one electro-optical tracking system. Each tracking unit exhibits its own tracking error mainly due to multi-path, clutter and radio refraction, and by utilizing only one among transmitted informations, it is not possible to determine the actual vehicle trajectory. This paper presents a way of generating flight trajectory via post-processing the data received from the ground tracking system. The post-processing algorithm is divided into two parts: compensation for atmosphere radio refraction and multi-sensor fusion, for which a decentralized Kalman filter was adopted and implemented based on constant acceleration model. Applications of the present scheme to real data resulted in the flight trajectory where the tracking errors were minimized than done by any one sensor.