DOI QR코드

DOI QR Code

최소자승법을 이용한 비행체 자동점검장비의 고정밀 신호 보정 방안

Correction Method of High-precision Signal for Aircraft Automatic Test Equipment Using Least Squares Method

  • 투고 : 2018.03.16
  • 심사 : 2018.04.26
  • 발행 : 2018.04.30

초록

비행체의 탑재장비의 야전정비를 위한 자동점검장비는 특수목적을 위한 소수의 비행체를 운용할 경우에는 통합 설계하는 것이 효율적이다. 통합형 자동점검장비는 공통적으로 사용되는 인터페이스를 식별하여 각 점검대상장비 별 점검에 사용할 수 있도록 분기하거나 경로를 생성해주는 방식이 사용된다. 분기 및 경로 생성 시 RTD, TC 및 아날로그 전압과 같은 고정밀 신호는 신호분기 및 연결 시 도선저항에 의한 측정 오류가 발생할 수 있다. 이러한 도선저항에 의한 측정 오류는 점검대상장비 설계 시 많은 제약을 가져오게 된다. 본 논문에서는 아날로그 전압 및 고정밀 신호의 측정오류를 최소화 할 수 있는 통합형 자동점검장비의 고정밀 신호의 보정방법을 제시한다.

Automatic test equipment for field maintenance of aircraft mounted equipment is effective for integrated design when operating a small number of aircraft for special purposes. The integrated automatic test equipment identifies commonly used interfaces and is used for branching or generating routes for each unit under test specific inspection. High-precision signals such as RTD, TC, and analog voltage can cause measurement errors due to conduction resistance during signal branching and connection when generating branches and paths. The measurement error caused by the resistance of the wire leads to a lot of restrictions in designing the equipment to be inspected. In this paper, we propose a method of calibrating highly accurate signals of an integrated automatic inspection equipment that minimizes measurement errors of analog voltage and high - precision signals.

키워드

참고문헌

  1. D. H. Cho, C. Y. S. Lim, Y. S. Yoon, and S. J. Kang, "The study on standardization and re-use for ATE design in production phase," in The Institute of Electronics Engineers of KOREA Symposium, Busan: Korea, pp. 1062-1065, Jun. 2017.
  2. Y. H. Yoon, K. Y. Ku, J. J. Keum, U. H. Hwang ,and S. Woo, "The study on improvement of ATE reliability in production phase," The Institute of Electronics Engineers of Korea - System and Control, Vol. 47, No. 6, pp. 19-26, Nov. 2010.
  3. H. J. Avil, "Are today's avionic system maintenance liabilities?" IEEE Transactions on Aerospace, Vol. 1, Issue 2, pp. 181-186, Aug. 1963. https://doi.org/10.1109/TA.1963.4319378
  4. T. D. McGee, Principles and Methods of Temperature Measurement, New York, NY: Wiley, 1988.
  5. T. Shafer, "An automated system for testing an avionics radio," in Microwave Measurement Conference, Seattle: WH, June. 2013.
  6. F. C. McKinzie , "Achieving greater automation in fibre channel test equipment for parametric and ASM protocol analysis and testing [military avionics]," in AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference, Anaheim: CA, Sept. 2003.
  7. J. Moreira and H. Werkmann, An Engineer's Guide to Automated Testing of High-Speed Interfaces, 2nd ed. Boston, MA: Artech House, 2015.
  8. L. B. Hunt, “The origin of the platinum resistance thermometer,” Platinum Metals Revision, Vol. 24, No. 3, pp. 104-112, July 1980.
  9. G. F. Strouse, Standard Platinum Resistance Thermometer Calibration form thr Ar TP to the Ag FP, National Institute for Standards and Technology, Gaithersburg: MD, Special Publication 250-81, 2008.
  10. Dean C. Ripple, G W. Burns, Standard reference material 1749: Au/Pt thermocouple thermometer, National Institute for Standards and Technology, Gaithersburg: MD, Special Publication 260-134, 2002.