• 제목/요약/키워드: 비행역학 모델

Search Result 67, Processing Time 0.024 seconds

Buzz Margin Control for Supersonic Intake Operating over Wide Range of Mach Number (넓은 마하수 영역에서의 초음속 흡입구 버즈마진 제어기법)

  • Park, Iksoo;Park, Jungwoo;Lee, Changhyuck;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Buzz margin scheduling and control technique which are suitable to regulate stable and high pressure air in wide range of Mach number are suggested for fixed geometry of a supersonic intake. From the analysis of preceding study, most effective control variable is induced and scheduling law is newly suggested in a real application point of view. The appropriateness of the control law in wide range of Mach number is addressed by numerical simulation of controlled propulsion system. Also, the simulation for stabilization and tracking performances of the controller are studied to investigate the phenomena under flight maneuver and disturbances.

Design and Analysis for the Propeller of MAVs in Low Reynolds Number Flows (저레이놀즈수 영역의 초소형비행체 프로펠러 설계 및 해석)

  • Lee, Ki-Hak;Kim, Kyu-Hong;Lee, Kyung-Tae;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • The performance of MAV(Micro Air Vehicles) propellers is highly affected by the aerodynamic characteristics of a 2-D blade airfoil shapes. XFOIL is used to predict the lift and drag coefficients in low Reynolds Number flows. ARA-D 6%, which shows a good performance in low Reynolds Number regions, is selected as a blade airfoil. The 3-D propeller blade shape is optimized with the minimum energy loss condition, and the distribution of aerodynamic coefficients of ARA-D 6% is calculated. The designed optimal blade is compared with the Black Widow's propeller blade shape in the same conditions. The results indicate that the designed propeller installed in MAV can provide a good performance.

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

The Stabilization Loop Design for a Drone-Mounted Camera Gimbal System Using Intelligent-PID Controller (Intelligent-PID 제어기를 사용한 드론용 짐발 시스템의 안정화기 설계)

  • Byun, Gi-sig;Cho, Hyung-rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.102-108
    • /
    • 2016
  • A flying drone generates vibrations in a great variety of frequencies, and it requires a gimbal system stabilization loop design in order to obtain clean and accurate image from the camera attached to the drone under this environment. The gimbal system for drone comprises the structure that supports the camera module and the stabilization loop which follows the precise angle while blocking the vibration from outside. This study developed a dynamic model for one axis for the stabilization loop design of a gimbal system for drones and applied classical PID controller and intelligent PID controller. The Stabilization loop design was developed by using MATLAB/Simulink and compared the performance of each controller through simulation. Especially, the intelligent PID controller can be designed almost without the dynamic model and it demonstrates that the angle can be followed without readjusting the parameters of the controller even when the characteristics of the model changes.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

Modificaion and Performance Test for improving ability of Supersonic/Hypersonic Wind Tunnel(MAF) (초음속/극초음속 풍동(MAF)의 성능 향상을 위한 개조 및 검증)

  • Choi, Won-Hyeok;Seo, Dong-Su;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.717-722
    • /
    • 2010
  • Supersonic/Hypersonic wind tunnel is a facility which is intended to test and to observe the physical phenomena around a model by creating supersonic flow in the test section. In designing an airplane, the wind tunnel test is demanded to analyzing aerodynamic characteristics of the model without making a prototype. In this research, the model aerodynamic facility(MAF) is modified for the purpose of increasing running time and its functionality. New pneumatic valves for remote control was installed for safety requirement, and new air tanks was installed on MAF as well. A pipe system is also modified to use those new valves and tanks, and the ceiling and side glasses of the test section are switched to ones with the larger surface area. After the MAF modification, a test is performed at Mach 2, 3 and 4. In this test, shadow graph technique, one of the flow visualization methods, is used to visualize supersonic flow field. The pressure in the settling chamber and working section at Mach 2, 3 and 4 was measured in each case. As a result, the possible model size and running time are obtained.

  • PDF

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Flight Path Measurement of Drones Using Microphone Array and Performance Improvement Method Using Unscented Kalman Filter (마이크로폰 어레이를 이용한 드론의 비행경로 측정과 무향칼만필터를 이용한 성능 개선법에 대한 연구)

  • Lee, Jiwon;Go, Yeong-Ju;Kim, Seungkeum;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.975-985
    • /
    • 2018
  • The drones have been developed for military purposes and are now used in many fields such as logistics, communications, agriculture, disaster, defense and media. As the range of use of drones increases, cases of abuse of drones are increasing. It is necessary to develop anti-drone technology to detect the position of unwanted drones using the physical phenomena that occur when the drones fly. In this paper, we estimate the DOA(direction of arrival) of the drone by using the acoustic signal generated when the drone is flying. In addition, the dynamics model of the drones was applied to the unscented kalman filter to improve the microphone array detection performance and reduce the error of the position estimation. Through simulation, the drone detection performance was predicted and verified through experiments.