• Title/Summary/Keyword: 비편향 추정량

Search Result 30, Processing Time 0.019 seconds

설계가중치를 이용한 유사 최량선형 비편향 예측

  • 신동윤;신민웅
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.161-164
    • /
    • 2004
  • You 와 Rao (2002)는 소지역 추정시 유사 최량선형 비편향 예측에서 설계 가중 값을 사용하는 방법을 발전시켰다. 특히 소지역 평균들을 추정하기 위하여 유사-최량선형 비편향 예측 추정량을 제안하였다. 우리는 소지역 추정에서 실용적으로 이용되는 몇 가지 추가적인 성질을 연구하였다.

  • PDF

표본의 대표성, 비편향성 그리고 효율성

  • 김규성
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.149-154
    • /
    • 2004
  • 이 논문에서는 표본조사에서 자주 사용되는 표본의 대표성, 비편향성, 그리고 효율성에 개넘에 대하여 고찰하였다. 표본의 대표성은 조사단위의 포함확률로 표현되며 조사모집단의 포함범위와 연관이 있는 반면, 비편향성과 효율성은 표집설계와 추정량에 관련된 개념이다. 비편향성과 효율성은 표본의 대표성을 전제로 하며 가중치 부여로 나타난다

  • PDF

Improving a Test for Normality Based on Kullback-Leibler Discrimination Information (쿨백-라이블러 판별정보에 기반을 둔 정규성 검정의 개선)

  • Choi, Byung-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.79-89
    • /
    • 2007
  • A test for normality introduced by Arizono and Ohta(1989) is based on fullback-Leibler discrimination information. The test statistic is derived from the discrimination information estimated using sample entropy of Vasicek(1976) and the maximum likelihood estimator of the variance. However, these estimators are biased and so it is reasonable to make use of unbiased estimators to accurately estimate the discrimination information. In this paper, Arizono-Ohta test for normality is improved. The derived test statistic is based on the bias-corrected entropy estimator and the uniformly minimum variance unbiased estimator of the variance. The properties of the improved KL test are investigated and Monte Carlo simulation is performed for power comparison.

A bias adjusted ratio-type estimator (편향 보정 비형태추정량에 관한 연구)

  • Oh, Jung-Taek;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.397-408
    • /
    • 2018
  • Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.

Comparison of Two Parametric Estimators for the Entropy of the Lognormal Distribution (로그정규분포의 엔트로피에 대한 두 모수적 추정량의 비교)

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.625-636
    • /
    • 2011
  • This paper proposes two parametric entropy estimators, the minimum variance unbiased estimator and the maximum likelihood estimator, for the lognormal distribution for a comparison of the properties of the two estimators. The variances of both estimators are derived. The influence of the bias of the maximum likelihood estimator on estimation is analytically revealed. The distributions of the proposed estimators obtained by the delta approximation method are also presented. Performance comparisons are made with the two estimators. The following observations are made from the results. The MSE efficacy of the minimum variance unbiased estimator appears consistently high and increases rapidly as the sample size and variance, n and ${\sigma}^2$, become simultaneously small. To conclude, the minimum variance unbiased estimator outperforms the maximum likelihood estimator.

Design-based Variance Estimation under Stratified Multi-stage Sampling (층화 다단계 샘플링에서 설계 기반 분산추정)

  • 김규성
    • Survey Research
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 2001
  • We investigate design-based variance estimation methods of homogeneous linear estimator for population total under stratified multi-stage sampling. One method is unbiasedly estimating the first stage variance and the second stage variance separately in each stratum. And another is sub-sampling method that estimating the first stage variance only by using sub-sample selected from the second stage sample so that resulting estimator is unbiased for the total variance. The first is useful when the second stage unbiased estimator is available and the second is when the second stage variance is not estimable. For each case, we proposed a form of non-negative unbiased variance estimator. We expect the proposed variance estimation methods can be effectively used for many practical surveys.

  • PDF

Design-based Variance Estimation under stratified Multi-stage Sampling (층화 다단계 샘플링에서 설계 기반 분산추정)

  • 김규성
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2001.04a
    • /
    • pp.59-71
    • /
    • 2001
  • We investigate design-based variance estimation methods of homogeneous linear estimator for population total under stratified multi-stage sampling. One method is unbiasedly estimating the first stage variance and the second stage variance separately in each stratum. And another is sub-sampling method that estimating the first stage variance only by using sub-sample selected from the second stage sample so that resulting estimator is unbiased for the total variance. The first is useful when the second stage unbiased estimator is available and the second is when the second stage variance is not estimable. For each case, we proposed a form of non-negative unbiased variance estimator. We expect the proposed variance estimation methods can be effectively used for many practical surveys.

Bias corrected non-response estimation using nonparametric function estimation of super population model (선형 응답률 모형에서 초모집단 모형의 비모수적 함수 추정을 이용한 무응답 편향 보정 추정)

  • Sim, Joo-Yong;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.923-936
    • /
    • 2021
  • A large number of non-responses are occurring in the sample survey, and various methods have been developed to deal with them appropriately. In particular, the bias caused by non-ignorable non-response greatly reduces the accuracy of estimation and makes non-response processing difficult. Recently, Chung and Shin (2017, 2020) proposed an estimator that improves the accuracy of estimation using parametric super-population model and response rate model. In this study, we suggested a bias corrected non-response mean estimator using a nonparametric function generalizing the form of a parametric super-population model. We confirmed the superiority of the proposed estimator through simulation studies.

Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data (복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.515-525
    • /
    • 2010
  • We investigated design-based properties of the ordinary least square estimator(OLSE) and the weighted least square estimator(WLSE) in a panel regression model. Given a complex data we derive the magnitude of the design-based bias of two estimators and show that the bias of WLSE is smaller than that of OLSE. We also conducted a simulation study using Korean welfare panel data in order to compare design-based properties of two estimators numerically. In the study we found the followings. First, the relative bias of OLSE is nearly two times larger than that of WLSE and the bias ratio of OLSE is greater than that of WLSE. Also the relative bias of OLSE remains steady but that of WLSE becomes smaller as the sample size increases. Next, both the variance and mean square error(MSE) of two estimators decrease when the sample size increases. Also there is a tendency that the proportion of squared bias in MSE of OLSE increases as the sample size increase, but that of WLSE decreases. Finally, the variance of OLSE is smaller than that of WLSE in almost all cases and the MSE of OLSE is smaller in many cases. However, the number of cases of larger MSE of OLSE increases when the sample size increases.

이변량 반복측정자료에서 가중일치상관계수의 추정

  • 강보경;김규성
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.261-266
    • /
    • 2000
  • 이변량 반복측정자료에서 Chinchilli 등(1996)이 제안한 가중일치상관계수는 두 변수의 일치성을 나타내는 측도이다. 기존에 제안된 가중일치상관계수 추정법은 변동효과 및 측정오차의 분산성분을 각각 최소제곱법으로 비편향 추정하여 구하는 것이다. 본 연구에서는 반복측정자료의 주변 우도함수를 설정한 후, 우도함수에 기초한 분산성분을 구하여 가중일치상관계수를 추정하는 방법을 제안한다. 이때, 각 분산성분은 유사/의사 우도함수 및 사후 분포에서 반복시행을 통하여 구해진다.

  • PDF