• Title/Summary/Keyword: 비파괴 손상 탐지

Search Result 36, Processing Time 0.02 seconds

A Study on the Shape Evaluation using Non-contact Electromagnetic Measurement System (비접촉식 전자기 측정 시스템에서 자성물체의 형상판정에 관한 연구)

  • Kim, Jae-Min;Yun, Seung-Ho;Won, Hyuk;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2010
  • We suggest the algorithm that it detects volume and shape according with a variation of magnetic field in non-contact electromagnetic measurement system. It is possible to assess an object shape through a variation of magnetic field. The basic idea is compared a length difference with a variation of magnetic field in a detected object and a circle which modeled equivalent area. And the shape is detected to many calibration process that it is similar to signal pattern between a length difference and a variation of magnetic field in object and equivalent circle. This is the shape detection algorithm that use only the variation of magnetic field. In this paper, it has application to the shape detection algorithm about the object as hexagon, pentagon, rectangle, trigon. we can detect the object shape easily because the shape detection algorithm is only used to the variation of magnetic field.

Nondestructive Damage Identification of Free Vibrating Thin Plate Structures Using Micro-Genetic Algorithms (마이크로 유전 알고리즘을 이용한 자유진동 박판구조물의 비파괴 손상 규명)

  • Lee, Sang Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.173-181
    • /
    • 2005
  • This study deals with a method to identify damages of free vibrating thin plate structures using the combined finite element method (FEM) and the advanced uniform micro-genetic algorithm.To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. The technique described in this paper allows us not only to detect the damaged elements but also to find their numbers, locations, and the extent of damage.To demonstrate the feasibility of the proposed method, the algorithm is applied to a free vibrating steel thin plate structures with arbitrary damages. From the standpoint of computation efficiency, the proposed method in this study has advantages when compared with the existing simple genetic algorithms. The numerical examples demonstrate that the method using micro-genetic algorithms can possibly detect correctly the damages of thin plates from only several natural frequencies instead of their natural modes.

Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성)

  • Ha, Seung-Chul;Kim, In-Gul;Lee, Seok-Je;Cho, Sang-Gyu;Jang, Moon-Ho;Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we examined impact force and impact behavior through low velocity impact tests of composite laminates. And through c-scan as nondestructive inspection, explored the damaged area being difficult to examine with the visual inspection. Through CAI tests, we also measured the compression strength of composite laminates subjected to low velocity impact. To examine the characteristics of impact behavior measured from low velocity impact test, nondestructive inspection, and CAI test, the simulated data are generated from the test data using Monte-Carlo simulation, then represented it by probability distribution. The testing results using visible stochastic distribution were examined and compared.

Detection of Fatigue Damage in Aluminum Thin Plates with Rivet Holes by Acoustic Emission (리벳 구멍을 가진 알루미늄 박판구조의 피로손상 탐지를 위한 음향방출의 활용)

  • Kim, Jung-Chan;Kim, Sung-Jin;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.246-253
    • /
    • 2003
  • The initiation and growth of short fatigue cracks in the simulated aircraft structure with a series of rivet holes was detected by acoustic emission (AE). The location and the size of short tracks were determined by AE source location techniques and the measurement with traveling microscope. AE events increased intermittently with the initiation and growth of short cracks to form a stepwise increment curve of cumulative AE events. For the precise determination of AE source locations, a region-of-interest (ROI) was set around the rivet holes based on the plastic zone size in fracture mechanics. Since the signal-to-noise ratio (SNR) was very low at this early stage of fatigue cracks, the accuracy of source location was also enhanced by the wavelet transform do-noising. In practice, the majority of AE signals detected within the ROI appeared to be noise from various origins. The results showed that the effort of structural geometry and SNR should be closely taken into consideration for the accurate evaluation of fatigue damage in the structure.

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.

Acoustic Emission Source Location in Filament Wound CFRP Pressure Vessel (필라멘트 와인딩으로 저작된 복합재 압력용기에서 탄성파 발생원의 위치표정)

  • Kim, Jeong-Kon;Won, Yong-Gu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 2003
  • Acoustic emission(AE) ran be very effectively applied to locate the damaged area in large structures by detecting the elastic waves generated during the damage process within solids. Source location in the composite structures has been, however, extremely difficult due to the acoustic anisotropy with the velocity dependence on fiber orientations. In this study, it has been shown that a newly proposed method for 2-D source location of anisotropic structures is practically applicable to the real structure. The method employes wave velocities obtained with different velocities from $0^{\circ}\;to\;90^{\circ}$ for a filament wound composite pressure vessel under the air-filled and the water-filled conditions.

Crack Detection of Concrete Using Fiber Optic Cables (Fiber Optic Cable을 이용한 콘크리트 균열탐사)

  • Cho, Nam-So;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • Crack detection technique for concrete structures has been developed in this study. Experimental tests were carried out to detect a surface and internal crack, employing common fiber optic cables and OTDR(optical time domain reflectometry), an optical signal analyzer which is widely used to detect damages at fiber optic cables in the field of optical engineering. While initial concrete crack is ready to occur under cracking force, the occurrence and location of the crack are simultaneously detected to give the same damage to fiber optic cables which have been attached to and/or embedded into concrete in advance. It is obtained through successive tests that the principal factors for crack detection is the covering state of fiber optic cable, and total 4 tests including a preliminary test were conducted and the crack detection technique was verified. The practical usefulness would be expected at crack management and maintenance of concrete structures.

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

A Basic Study on the Varying Thickness Detection of Steel Plate Using Ultrasonic Velocity Method (초음파 속도법을 활용한 강판의 두께 변화 탐지를 위한 기초연구)

  • Kim, WooSeok;Mun, Seongmo;Kim, Chulmin;Im, Seokbeen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.146-152
    • /
    • 2020
  • This study was initiated to develop an effective inspection method to detect defects such as corrosion in closed-cell steel members in steel-box girder bridges. The ultrasonic velocity method among various non-destructive method was selected as a rapid and effective method to derive the average propagation velocity in the medium by using the ultrasonic wave velocity method for specimens of different thickness. The regression analysis was performed based on the experimental results, and the results was interpolated to evaluate the prediction accuracy. If the material properties are identical, this ultrasonic velocity method can predict the thickness using the averaged transmitted velocity. In addition, a continuous scanning method moving at 200 mm/s was tested for scanning a wide area of a bridge. The results exhibited that the continuous scanning method was able to effectively scan the different thickness of a bridge.