Detection of Fatigue Damage in Aluminum Thin Plates with Rivet Holes by Acoustic Emission

리벳 구멍을 가진 알루미늄 박판구조의 피로손상 탐지를 위한 음향방출의 활용

  • Published : 2003.06.30

Abstract

The initiation and growth of short fatigue cracks in the simulated aircraft structure with a series of rivet holes was detected by acoustic emission (AE). The location and the size of short tracks were determined by AE source location techniques and the measurement with traveling microscope. AE events increased intermittently with the initiation and growth of short cracks to form a stepwise increment curve of cumulative AE events. For the precise determination of AE source locations, a region-of-interest (ROI) was set around the rivet holes based on the plastic zone size in fracture mechanics. Since the signal-to-noise ratio (SNR) was very low at this early stage of fatigue cracks, the accuracy of source location was also enhanced by the wavelet transform do-noising. In practice, the majority of AE signals detected within the ROI appeared to be noise from various origins. The results showed that the effort of structural geometry and SNR should be closely taken into consideration for the accurate evaluation of fatigue damage in the structure.

항공기 구조를 모사하여 일련의 리벳 구멍을 갖는 AA2024-T3 박판 구조를 대상으로 피로하중에 의한 단균열(short crack)의 발생시점과 성장거동을 음향방출(AE)을 위주로 한 측정으로 평가하였다. AE 위치표정에 의해 단균열의 좌표를 정확하게 결정하였으며, 이동식 현미경으로 균열의 크기를 측정하였다. 누적 AE 발생수 곡선은 단균열의 발생과 성장에 따라 일정한 간격을 두고 급격히 증가하는 양상을 보임으로써 여러 차례의 계단식 곡선을 형성하였다. AE 위치표정에서는 리벳 구멍을 중심으로 파괴역학에 근거한 관심영역(ROI)을 설정하였으며, 웨이블릿변환 잡음제거 방법을 사용하여 위치표정의 정확도를 향상할 수 있었다. 실제로 탐지된 신호의 대부분이 단 균열의 발생 및 성장과 관계없는 외부 잡음신호로 나타났으며, ROI 내에서 발생한 AE 발생원의 위치도 구조의 기하학적 특징이나 신호대잡음비의 영향에 의해 왜곡될 수 있음을 알 수 있었다.

Keywords

References

  1. D. H. Kohn, P. Ducheyne and J. Awerbach, 'Acoustic Emission during Fatigue of Ti-6AI-4V: Incipient Fatigue Creak Detection Limits and Generalized Data Analysis Methodology,' J. of Materials Science, Vol. 27, pp. 3133-3142, (1992)
  2. D. M. Granata, P. Kulowitch, W. R. Scott and J. Talia, 'Acoustic Emission Waveform Aquisition during Fatigue Crack Growth,' Review of Progress in QNDE, Vol. 12, pp. 2183-2190, (1993)
  3. A. Berkovits and D. Fang, 'Study of Fatigue Crack Characteristics by Acoustic Emission,' Engineering Fracture Mechanics, Vol. 51, pp. 401-416, (1995) https://doi.org/10.1016/0013-7944(94)00274-L
  4. K. Ono and J. Y. Wu. 'Pattern Recognition Analysis of Acoustic Emission from Fatigue of 2024-T4 Aluminum,' Progress in Acoustic Emission VIII, Japanese Society for NDI, pp. 237-242, (1996)
  5. I. M. Daniel, C. G. Sifniotopoulos and J. J. Luo, 'Analysis of Acoustic Emission Output from Propagating Fatigue Creak,' Review of Progress in QNDE, Vlo. 17, pp. 579-586, (1998)
  6. Z. Shi, J. Jarzynski, S. Bair and L. J. Jacobs, 'Study of Acoustic Emission from Incipient Fatigue Failure,' Review of Progress in QNDE, Vol. 18, pp. 395-401, (1999)
  7. 정중채, 윤동진, 박휘립, 김기복, 이승석, ‘구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘시 AE 발생특성 연구,‘ 비파괴검사학회지, 제22권, 제2호, pp. 155-169, (2002)
  8. S. Suresh, 'Fatigue of Materials,' Cambridge University Press, 2nd Edition, pp. 544-555, (1998)
  9. V. V. Bolotin, 'Mechanics of Fatigue,' CRC Press, Boca Raton, Florida, pp. 1-65, (1999)
  10. 권오양, ‘피로손상과 비파괴평가,’ 비파괴검사학회지, 제20권, 제1호, pp. 54-61, (2000)
  11. ASTM E647-95a, 'Standard Test Methods for Measurement of Fatigue Crack Growth Rates,' Annual Book of ASTM Standards, Vol. 03.01, ASTM, pp. 606-614, (2000)
  12. 이경주, 권오양, 주영찬, '웨이블릿 변환 노이즈 제거에 의한 AE 위치표정,‘ 비파괴검사학회지, 제20권, 제6호, pp. 490-499, (2000)
  13. R. W. Hertzberg, 'Deformation and Fracture Mechanics of Engineering Materials,' Fourth Edition, pp. 329-330, (1996)
  14. T. Ohira and Y. H. Pao, 'Microcrack Initiation and Acoustic Emission during Fatigue Toughness Tests of A533B Steel,' Metallugical Transactions A, 17A, pp. 843-851, (1986)
  15. S. L. McBride and Y. Hong, 'Acoustic Emission from Crack Growth in 7050 Aluminum and 7075 Aluminum as a Function of Temperature and Heat Treatment,' Progress in Acoustic Emission VI, Japanese Society for NDI, pp. 521-528, (1992)