• Title/Summary/Keyword: 비파괴 검사법

Search Result 467, Processing Time 0.023 seconds

Complement of Ultrasonic Nondestructive Testing Code using Finite Element Method (유한요소법을 이용한 초음파 비파괴검사 규격의 보완)

  • Jeong, Hwa-Young;You, Seung-Youp;Shin, Byoung-Churl;Jung, Beom-Seok;Yi, Chang-Moo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.157-162
    • /
    • 1999
  • KS-code(KS B 0896) for nondestructive ultrasonic testing judge the quality level by ratio of flaw size to plate thickness only. But stress distributions using finite element analysis show that location of the flaws are more important than the flaw size. So, KS-code should take into account of flaw location for judging the quality level of welded steel structures.

  • PDF

A Magnetic Flux Leakage Analysis of Various Defects for Underground Pipeline (누설자속을 이용한 지하매설관 결함의 크기 및 형상 판정을 위한 해석(I))

  • Kim, Chul;Kim, Han-Deul;Shin, Pan-Seok;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.38-40
    • /
    • 2005
  • 이 논문은 지하매설관의 손상에 따른 자기누설 신호를 유한요소법을 이용하여 Simulation 하고, 자기누설탐사장치를 이용하여 지하매설관에 대한 비파괴검사를 할 경우 나타나는 여러 가지 자기적 신호를 분석하여 손상의 크기나 형상 등을 판별할 수 있도록 기본적인 자기누설정보를 제공하기 위한 연구이다. 3가지 형태의 결함을 배관과의 상대적인 위치에 따라 3차원 FEM으로 해석을 하고 결함의 형상 및 크기대한 정보제공을 위하여 분석을 하였다.

  • PDF

Experimental Study on Crack Detection of Clamped-clamped Beams (양단 고정보의 크랙 검출에 대한 실험적 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2010
  • In this paper, the purpose is to study a method for detection of crack in clamped-clamped beams using the vibration characteristics. The natural frequency of beam is obtained by FEM and experiment. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The differences between the actual and predicted crack positions and sizes are less than 9.8% and 28%, respectively.

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Acoustic Emission Monitoring of Incipient Failure in Journal Bearing Part II : Intervention of Foreign Particles in Lubrication (음향방출을 이용한 저어널 베어링의 조기파손감지(II) - 윤활유 이물질 혼입의 영향 및 감시 -)

  • Yoon, Dong-Jin;Kwon, Oh-Yang;Jung, Min-Hwa;Kim, Kyung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.122-131
    • /
    • 1994
  • Journal bearings in the rotating machineries are vulnerable to the contamination or the insufficient supply of lubricating oil, which is likely to be the cause of unexpected shutdown or malfunction of these systems. Various destructive and nondestructive testing methods had been used for the reduction of maintenance cost and the operational safety problems due to the accidents related to bearing damages. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. Experimental schedules for the intervention of foreign particles was composed to be more quantitative and systematic than last study in consideration of minimum oil film thickness and particle size. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. Several parameters such as AE rms level, waveform, AE energy distribution and other AE event parameters are used for analysis and characterization of damage source. The results showed that the history of damage was well correlated with the changes of AE rms level and the type of damage source signal can be verified using other informations such as waveform, distributions of AE parameters etc.

  • PDF

Ultrasound Wave Propagation in Thick Composites with Uniform Fiber Waviness (일정한 보강섬유 굴곡이 있는 두꺼운 복합재료에서의 초음파 전파에 관한 연구)

  • Chun, Heoung-Jae;Jang, Pil-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.288-298
    • /
    • 2001
  • There has been a growing interest in thick composite materials especially for primary structures. Fiber waviness is one of the manufacturing defects frequently encountered in thick composite structures and affects the mechanical properties such as stiffness and strength significantly. Therefore, nondestructive evaluation technique that can detect fiber waviness of thick composite is very important for the integrity of structures. In this study, efforts were made to understand ultrasonic wave propagation in thick composites with uniform fiber waviness by adopting the ray and plane wave theories. Both theoretical and experimental investigations were conducted to understand the wave propagation in thick composites with uniform fiber waviness. The experiments were conducted on specially fabricated thick composite specimens with various degrees of uniform fiber waviness using the conventional through-transmission method to verify the predicted results. The experimental results showed good agreement with the theoretical predictions.

  • PDF

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.89-96
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

Debonding Detection Techniques of FRP/Rubber Interface by the Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착계면의 미접착 결함 검출 연구)

  • Kim Dong-Ryun;Chung Sang-Ki;Lee Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.11-16
    • /
    • 2006
  • The object of this study is to develop new examination techniques for detecting the debonds in adhesive interface of different kinds of the material. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to quantitatively evaluate the minimum detection ability of the defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debonds on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

  • PDF