• Title/Summary/Keyword: 비파괴탐상

Search Result 228, Processing Time 0.029 seconds

Development of a Multichannel Eddy Current Testing Instrument(I) (다중채널 와전류탐상검사 장치 개발(I))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoon, Byung-Sik;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Recently, the electromagnetic techniques of the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In this study, the synthesizer module and the analog module which are essential to the ECT system were primarily developed. The developed ECT system is basically a multifrequency type which is able to inject the maximum four frequencies based on the frequency and time domain multiplexing method. Conclusively, we confirmed that the EC signal was processed appropriately in each circuit modules, and the Lissajous EC signal was displayed in the impedance plane.

Development of Differential Type Eddy Current Probe for NDT Evaluation of the Steam Generator Tube (증기발생기 전열관의 비파괴 탐상용 차등형 와전류 탐촉자 개발)

  • Jung, S.Y.;Son, D.;Ryu, K.S.;Park, D.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.292-297
    • /
    • 2005
  • Steam generator of a nuclear power plant has important rolls for the heat transfer and the isolation of radioactive materials. So bursting of the steam generator tube is directly related to the accident of nuclear power plants. Incone1600 has been used for the steam generator tube material. The material shows non-magnetic and metallic properties, eddy current NDT method has been employed for defects detection. In this work, a differential type of eddy current probe was developed to improve resolution of defect detection. To verify properties of the developed differential type eddy current probe, we have made reference material with SUS304 which has similar magnetic and electrical properties of Inconel600. Using the developed differential type eddy current probe, we can detect defect size of 0.25 mm in diameter and 0.2 mm in depth (volume of $1{\times}10^{-3}\;mm^3$) with the reference material.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

Feasibility Study of Remote Field Eddy Current Testing for Nonmagnetic Steam Generator Tubes (비자성 증기발생기 전열관의 원격장와전류 탐상 가능성 연구)

  • Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.518-525
    • /
    • 2001
  • As steam generator (SG) tubes have aged, new and subtle flaws have appeared. Most of them start growing from outside the tubes. Since signals from outer diameter (OD) defects are very weak compared to those from inner diameter (ID) defects in the conventional eddy current testing due to skin effect, this paper studies the feasibility of using remote field eddy current (RFEC) technique, which has shown equal sensitivity to ID and OD defects in the ferromagnetic pipe inspection. Finite element modeling studies show that the operating frequency needs to be increased up to a few hundred kHz in order for RFEC effects to occur in the nonmagnetic SG tube. The proper distance between exciter and sensor coils is also found to be about 1.5 OD, which is half the distance used in the ferromagnetic pipe inspection. Defect signals obtained by the designed RFEC probe show equal sensitivity to ID and OD defects and the existence of linear relationship between defect depth and phase signal strength. These results tell us that RFEC inspection is feasible even in nonmagnetic steam generator tubes.

  • PDF

초음파탐상 PD-RR Test의 통계적 신뢰도 평가(I)

  • 박익근;김현묵;박은수;박윤원;강석철;최영환
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.245-255
    • /
    • 2001
  • 원전 가동전/가동중검사 결과의 신뢰도(reliability)는 원전 배관기기의 건전성에 직결되는 것으로써 결함 발견 시 적용되는 파괴역학해석(FMA)은 비파괴검사 결과에 대한 100%의 신뢰를 전제하고 있다. 그러나 비파괴검사가 어느 정도 신뢰성을 가지고 있는지에 대한 평가가 국내에서는 거의 수행된 바가 없었다. 따라서, 본 연구에서는 원전의 비파괴검사 규제 요건의 기술적 근거를 확보하고, 원전 기기 건전성 평가 및 안전성 향상을 위한 합리적 규제지침을 수립하기 위하여 국내 원전 가동중검사(ISI)에 적용되거나 일반 산업계에 적용되고 있는 초음파탐상검사에 대하여 기량검증 Round Robin Test에 의한 통계적 신뢰도를 평가하고자 한다. 이를 위해 초음파검사 PD-RRT 결과의 통계적 신뢰도 평가 모델을 고찰하고, 결함검출성능 평가, 결함크기 측정 평가, 팀 오차 분석 등 초음파검사 PD-RRT 결과의 통계적 신뢰도를 평가하였다.

  • PDF

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

Development of a Multichannel Eddy Current Testing Instrument(II) (다중채널 와전류탐상검사 장치 개발(II))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoo, Hyun-Joo;Kim, In-Chel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • Recently, the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction phenomenon. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In the previous study, the synthesizer module and the analog module which is essential to the ECT system were primarily developed, and in this study the data acquisition and analysis program were developed. The operation system for this program is based on the Windows 7, and optimized for the Korean users, and the specific feature of this program using setup wizard enables inspector to make a setup easily for acquisition and analysis of ECT data. In this paper, the configuration and functions of eddy current data acquisition and analysis program will be introduced.

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.