• Title/Summary/Keyword: 비파괴조사

Search Result 346, Processing Time 0.025 seconds

Comparison of Enhancing Fingerprints Treated with Two Fluorescence Amino Acid Reactive Reagents in Accordance with Laser and LED Light Sources (광원에 따른 아미노산 반응 형광시약 처리지문의 증강 효과성 비교)

  • Kim, Chae-Won;Ki, Jin-Young;Kim, Kyu-Yeon;Kim, Ji-Yeon;Jeon, So-Young;Yu, Je-Seol
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.569-575
    • /
    • 2017
  • Forensic light source is commonly used for enhancing evidence in a nondestructive way. Latent fingerprints play an important role in an aspect of crime scene investigation. In this study, researchers compared enhancement of standard fingerprints treated with DFO and 1,2-IND in accordance with laser and LED light sources. As a result, laser light source has a better effect rather than LED light sources. However, each light source has strengths and weaknesses in terms of performance and portability. Therefore, researchers recommend that crime scene investigators need to use laser and LED light sources depending on the situation.

Interfacial Evaluation of Single Ramie and Kenaf Fibers/Epoxy Composites Using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf 및 Ramie 섬유 강화 에폭시 복합재료의 계면물성 평가)

  • Park, Joung-Man;Tran, Quang Son;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Interfacial shear strength (IFSS) of environmentally friendly natural fiber reinforced polymer composites plays a very important role in controlling the overall mechanical performance. The IFSS of various Ramie and Kenaf fibers/epoxy composites was evaluated using the combination of micromechanical test and nondestructive acoustic emission (AE) to find out optimal conditions for desirable final performance. Dynamic contact angle was measured for Ramie and Kenaf fibers and correlated the wettability properties with interfacial adhesion. Mechanical properties of Ramie and Kenaf fibers were investigated using single-fiber tensile test and analyzed statistically by both uni-and bimodal Weibull distributions. An influence of clamping effect on a real elongation for both Ramie and Kenaf fibers were evaluated as well. Two different microfailure modes, axial debonding and fibril fracture coming from fiber bundles and single fiber composites (SFC) were observed under tension and compression.

  • PDF

Flame Retardant Treatment's Effects and Detection Method on Wooden Buildings' Pigment Layer (Dan-cheong) (국내 목조건축물 단청의 방염제 처리에 따른 영향 및 탐지방법 연구)

  • Kim, Dae Woon;Kim, Chul Woong;Han, Sung Hee;Chung, Yong Jae;Han, Gyu Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.393-406
    • /
    • 2014
  • To figure out the problems of flame retardant treatment (FRT) on wooden buildings, field investigation and analysis of statistical data are performed. After FRT on historical wooden building, efflorescence and exfoliation showed most often. These problems appeared especially on column, rafter and Ga-gu (Ingredients for supporting structure of a roof) which are liberally spreaded. To compare before and after FRT, analyzed 20 elements using P-XRF. In this process, found sulfur which informs FRT. This helped set up nondestructive assay. Through this process, confirmed field application by analysis residue component of Songgwang-sa Temple.

Evaluation of Subgrade Stiffness after Microtunnelling Operations at JFK Airport by Crosshole and SASW Tests (마이크로터널링으로 인한 활주로 기층의 전단 강성의 변화 : 크로스흘 시험과 SASW 실험에 의한 평가)

  • 조성호
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.67-78
    • /
    • 1998
  • Microtunnelling is a technique applied to install a small-size tunnel in a soft cohesionless ground. In microtunnelling, a series of concrete tubular segments are pushed from a starting pit to power-line tunnel under a runway of JFK international airport at New York. During the microtunneling process, bentonite is jetted with very hyh pressure through a nozzle to advance disturbance in the subgrade caused by the pressurized bentonite in the aspects of subgrade stiffness. SASW measurements were performed on the runway above the center line of the shear wave velocity profiles. Besides the change of subgrade stiffness, the change of subgrade strength was also evaluated by the site-specific relationships between shear wave velocity and N value, which was determined by N values. The estimated N values gave a clue to the understanding of the change of subgrade strength.

  • PDF

Evaluation of Delamination of Dental Composite Restoration using Infrared Lock-in Thermography (열화상 기술을 이용한 치아/복합레진 수복부의 박리 평가)

  • Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.236-240
    • /
    • 2012
  • The purpose of this study was to investigate the feasibility on the detection of dental composite delamination using a lock-in thermography method. Amplitude and phase images of detected thermal signals were analyzed according to the lock-in frequencies. At a lock-in frequency of 0.05 Hz, the ligament thickness of 0.5 mm in the specimen exhibited the highest amplitude contrast between defective area and sound area. For ligament thicknesses of 1 mm and 1.5 mm, delamination detection was possible at 0.025 Hz and 0.01 Hz through the amplitude differences. At lock-in frequencies of 0.006 Hz and 0.01 Hz, ligament thickness 0.5 mm exhibited the highest phase contrast. For ligament thicknesses of 1 mm and 1.5 mm, the phase contrast exhibited possible detection of delamination at 0.006-0.1 Hz.

Analysis of Vibration Modes of Small and Large Concrete Blocks Containing Flaws by Impact Resonance Method (충격 공진법에 의한 대소 경계조건하 콘크리트 블록 내부결함 신호의 해석)

  • Park, Seok-Kyun;Yoon, Seok-Soo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.161-171
    • /
    • 1999
  • Impact resonance testing was carried out on small and large concrete blocks containing several types of artificial flaws respectively. Quantitative analysis of the observed peak frequencies in the impact resonance tests identifies the possible normal modes of concrete blocks containing flaws. and enables to determine the depth and size of the flaws in concrete blocks. In this study, concrete can be treated as a homogeneous and isotropic material. The flaw size and location at each section of artificial flaw series in small and large concrete blocks, determined through two-dimensional scanning of impact point and real-time fast Fourier transform, are in good agreement with real size location, respectively. Consequently, quantitative analysis method of vibration modes in the impact resonance tests, which can be applied for homogeneous and isotropic material, can be useful for the detection of flaws in any case of small and large concrete blocks in this study.

Study on the Material Characteristic of Baekeuikwaneum (the White-Robed Buddhist Goddess of Mercy) Wall-Painting of Bogwangmyungjun in Wibongsa, Wanju (완주 위봉사보광명전 백의관음벽화의 재료학적 특성 연구)

  • Kim, Young Sun;Lee, Sang Jin;Choi, In Sook;Jin, Byung Hyuk;Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2014
  • On this studyed, the Wibongsa BoGwangMyungJun BaekEuiKwanEum wall-painting was conservation of Scientific research ahead. This study carried out Grain size analysis, SEM-EDS, XRD, P-XRF, FT-IR and ultrasonic exploration for wall-painting. As a result, walls layer used to mineral particles size was mixing the medium-texture and fine texture. painting layers pigments used to base paintings was ocher, white pigments was hobun, red pigments was suckganju, green pigments was suckruk. Also BackuiKannon wall-painting walls damage reason of that was long-term physical shocks. painting layers damage was include detachment or powders. it is affected by temperature and humidity. Therefore in the future conservation of wall-paintings through scientific analysis based on such data, conservation processing is performed through the preservation and enhance the stability of the paintings as a basis for the conservation of management can be utilized.

Interpretation of Making Techniques and Nondestructive Diagnosis for the Clay Statues in Donggwanwangmyo Shrine, Seoul (서울 동관왕묘 소조상의 비파괴진단 및 제작기법 해석)

  • Yi, Jeong Eun;Han, Na Ra;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • The Clay Statues of Donggwanwangmyo Shrine (Treasure No. 142) are highly damaged physical weathering which are crack, exfoliation. Pigment of surface are discolored by chemical weathering like dust. The result of ultrasonic velocity measurement, low velocity zone was measured the lowest part of Woojanggun Statue. Deficiency condition of pigment layer was evaluated quantitatively through infrared Thermography. As a result, exfoliation part was detected at high temperature. Making techniques of the Clay statues were identified by gamma rays, infrared TV, SEM. All Clay Statues were founded on wood base and joints of wood were fixed using thin iron wires. After wood base was twisted a straw rope, it was made by clay. Clay was blended with rice straw to prevention of crack and exfoliation. The upper side of clay layer was coated with Hanji(Korean handmade paper) and cotton in order to isolate the pigment layer.

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

Real Time Image Acquisition System using a Image Intensifier and Position Error Verification (영상증배관을 이용한 실시간 영상획득시스템과 위치오차검증)

  • Lee, Dong-Hoon;Kim, Nam-Hoon;Jeong, Jong-Beom
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2017
  • In this study, a portable x-ray generator was manufactured and a real-time image acquisition system was constructed using the image intensifier from the generated generator. We have developed a real - time position error verification system that can verify whether the artificial joint position is different from the initial image from the acquired image. The template image of the region of interest is extracted from the reference image using the pattern matching technique and compared with the image to be compared. As a result, It is shown that real - time position error verification is achieved by displaying the difference angle. This system is portable type, has a self-shielding facility, and the output of the irradiation device can be manufactured in a small size of 1kw and can be used as a portable type. In case of emergency patients in the non-destructive field for industrial use, It has proved effective for use in small areas such as feet.