• Title/Summary/Keyword: 비틀림응력

Search Result 130, Processing Time 0.021 seconds

Development of Computer Program of Torsional Vibration Analysis for Design of Diesel Engine Propulsion Shafting (디젤기관 추진축계의 설계를 위한 비틀림 진동해석 전산프로그램의 개발)

  • Choi, M.S.;Moon, D.H.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 2003
  • It is very important to analyze the torsional vibration for the propulsion shafting of ship. The authors have developed the transfer stiffness coefficient method(TSCM) as a vibration analysis algorithm. The concept of the TSCM is based on the successive transfer of stiffness coefficient. The effectiveness of the TSCM was verified through many applications. In this paper, the TSCM is applied to the torsional free vibration analysis for the propulsion shafting of an actual shin with a diesel engine. In order to calculate the additional torsional stresses of the propulsion shafting the torsional forced vibration for the shafting is analyzed by using both the modal analysis method and the results of the torsional free vibration analysis by the TSCM. The accuracy of the present method is confirmed by comparing with the vibration analysis results of engine maker.

  • PDF

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF

A Study on Structural Safety of CFRP Plate with Notch Hole at Center Part under Torsion (비틀림을 받는 중앙부에 노치홀을 가진 CFRP 판의 구조 안전성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.925-932
    • /
    • 2017
  • In this study, the analysis of plate under torsion was carried out according to stacking angle at the unidirectional carbon fiber reinforced plastic(UD CFRP) among composite materials. In case of UD CFRP, the material property due to stacking angle becomes different. Also, the stacking angles were designated to 15°, 30°, 45°, 60°, 75° and 90° at the study models. The notch hole was applied at the center part by supposing that rivet or hole was used. The analysis method was used by applying the experimental method at ISO 15310. Two jigs were fixed at the lower part and two jigs were descending at the upper part. As seen by the analysis result values at this study, the shear stress happening at the fracture part was seen with the lowest value in case of the stacking angle of 45°. It is known that the case of the stacking angle of 45°has the structural safety and durability higher than those of the other stacking angles when the torsion applies. It is thought that this result can be applied to the data of basis which can be devoted to the durability when the torsion is applied at CFRP plate.

Prediction of Biaxial Strength and Fatigue Life using the Concept of Equivalent Strength (등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • A failure criterion must be considered in each failure mode and loading condition to provide easy determining strength parameters, flexibility and rational simplicity. In this study, new failure criterion was developed by introducing equivalent strength under biaxial loading of tension and torsion. The experimental results showed that the equivalent biaxial strength has a power law relation with respect to a parameter, cos($tan^{-1}R_b$). Failure strength under biaxial loadings could be predicted as a function of tensile strength, torsional strength and biaxial ratio. The scattering of experimental data could be predicted using a Weibull distribution function and the concept of equivalent biaxial strength. Also, in this study, a fatigue theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for uniaxial loading. The prediction models can be predicted a biaxial strength and fatigue life of general laminated composite naterials under multi-axial loadings.

  • PDF

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling (국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구)

  • Seo, Gun-Ho;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.647-657
    • /
    • 2011
  • This paper describes the moment capacity of flexural members with local buckling based on a series of FE and experiment results. Thin-walled flexural members undergo local, lateral-torsional, or interactive buckling according to the section geometries and lateral boundary conditions. Flexural members with large width-to-thickness ratios in the flanges or the web may undergo local buckling before lateral-torsional buckling. Local buckling has a negative effect on the flexural strength based on the lateral-torsional buckling of flexural members. This phenomenon should be considered in the estimation of the flexural strength of thin-walled sections. Flexural members with various width-to-thickness ratios in their flanges and web were analyzed. Initial imperfections in the local buckling mode, and residual stresses, were included in the FE analyses. Simple bending moment formulae for flexural members were proposed based on the FE and test results to account for local and lateral-torsional buckling. The proposed bending moment formulae for the thin-walled flexural members in the Direct Strength Method use the empirical strength formula and the grosssection modulus. The ultimate flexural strengths predicted by the proposed moment formulae were compared with the AISC (2005), Eurocode3 (2003), and Korean Highway Bridge Design Specifications (2010). The comparison showed that the proposed bending moment formulae can reasonably predict the ultimate moment capacity of thin-walled flexural members.

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Nonlinear Analysis of Adhesive Tubular Joints with Composite Adherends subject to Torsion (비틀림 하중을 받는 복합재료 튜브형 접합부의 비선형 해석)

  • Oh Je-Hoon
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2006
  • Since composite materials have anisotropic properties that depend on their stacking angle and sequence, the analysis of joints with isotropic adherends is limited in describing the behavior of the adhesive Joint with composite adherends. In this study, the nonlinear solution for adhesive joints with composite adherends was derived by incorporating the nonlinear behavior of the adhesive into the analysis. The behavior of the laminated composite tube was first analyzed, and the stress distributions of the composite tubular adhesive joint were calculated by including the nonlinear properties of the adhesive. The effect of the stacking sequence of composite adherends and bonding length on torque capacities of joints was examined, and results of the nonlinear analysis were also compared with those of the linear analysis.

Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar (집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석)

  • Han, Yeonjung;Chang, Yoon-Seong;Park, Yonggun;Jeong, Gi-Young;Hong, Jung-Pyo;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.535-543
    • /
    • 2013
  • The objective of this study was to analyse the residual stress in Larix kaempferi board during and after kiln-drying. The boards were primarily intended for using as laminar of cross laminated timber (CLT). In this study, the equivalence of moisture content by equalizing treatment was proved and reduction of residual stress by conditioning treatment was quantified. Prong test and slice test were carried out to analyse the residual stress in wood during drying. Transverse casehardening was measured immediately after making prong sample. Residual stress of four parts in wood from surface to center was analyzed quantitatively based on elastic deformation after just cutting slices from board. Tensile stress and compressive stress on the surface of board during drying did not exceed 2.2 MPa when boards were dried by kiln-drying schedule of T10-C4 and T12-D5. Because the tensile strength and compressive strength of transverse direction of Larix kaempferi lumber are 2.65 MPa and 4.60 MPa, application of more severe drying schedule can be recommended. Cup and twist were reduced by about 40% by equalizing and conditioning treatments after drying.