• Title/Summary/Keyword: 비틀림강성

Search Result 161, Processing Time 0.026 seconds

The Torsion Analysis of a Cylindrical Bar with the Cross-Section Bounded by Circles (단면이 원형경계를 갖는 실린더 축의 비틀림 해석)

  • 김윤영;오경민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2322-2330
    • /
    • 1994
  • The torsion problem in a cylindrical rod is usually formulated in terms of either the warping function or the Prandtl stress function. In a rod whose cross-section is bounded by circles and rectangles, we develop an analytic solution approach based on the warping function, which satisfies Laplace's equation. The present formulation employs polynomials and The Fourier series-type solutions, both of which satisfy exactly the governing differential equation. Using the present method, the maximum shear stress and torsional rigidity are efficiently and accurately calculated and the present results are compared with those by other methods. The specific numerical examples include the case with eccentric holes which was investigated earlier. The finite element results are also compared with the present results.

능동 비틀림 제어에 용이한 블레이드의 스파형상 선정

  • Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.184-190
    • /
    • 2015
  • On wide variety of fields, studies on active twist control are becoming more active. For effective twist control, blades have to have low torsional stresses with high torsional deformations to the same magnitude of torque acting on its cross-section. In this study, 2D sectional analysis and 3D finite element analysis were made for 5 different blades with each having different cross - sections which have different spars. The results from 2D sectional analysis, were then put into 3D blade deformation and stress calculations which lead to analysis. Outcomes from 2D and 3D analysis, showed that on the same torque and concentrated load conditions, the blade with 'C' shaped spar was the best of all the blades which were used in this study.

  • PDF

The Effect of Nonlinear Fabric Bending Rigidity on the Cantilever Test - with Image Analysis- (이미지 분석법을 사용한 직물의 비선형 외팔보 굽힘 연구)

  • 서문호;장보은
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.299-300
    • /
    • 2003
  • 직물은 유연하여 외력에 의해 쉽게 굽힘, 비틀림 등의 변형이 일어난다. 이러한 특성 중 직물의 굽힘은 태, 봉제성, 드레이프성 등의 중요 인자로서 지금까지 여러 연구들이 직물의 구조에 관련하여 굽힘강성을 분석하려는 시도가 계속되어 왔다. 이러한 연구의 최초의 시도로서 1930년대 Peirce가 직물을 선형탄성체로 가정한 후 외팔보법을 적용시켜 굽힘길이로 굽힘강성을 나타내었으며[l] 현재까지도 이 시험법이 시행되어 오고 있다. (중략)

  • PDF

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.

Effects of Torsional Flexibility on a Flapping Airfoil (플랩핑 에어포일에 대한 비틀림 유연성의 영향)

  • Cho, Moon-Sung;Bae, Jae-Sung;Kim, Hark-Bong;Kim, Woo-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1146-1151
    • /
    • 2008
  • In this paper, the effects of torsional flexibility on a flapping airfoil are investigated. The aerodynamic forces of a torsional flexible flapping airfoil is computed using 2-D unsteady vortex panel method. A typical-section aeroelastic model is used for the aeroelsatic calculation of the flapping airfoil. Torsional flexibility and excitation frequency are considered as main effective parameters. Under heavy airfoil condition , the thrust peak is observed at the points where the frequency ratio is about 0.75. Based on this peak criterion, there exists two different motions. One is an inertia driven deformation motion and the other is an oscillation driven deformation motion. Also, in the thrust peak condition, the phase angle is kept 85 degrees, independent of the torsional flexibility and the excitation frequency.

Seismic Performance Evaluation of Special Moment Steel Frames with Torsional Irregularities - I Seismic Design (비틀림 비정형을 갖는 철골특수모멘트골조의 내진성능평가 - I 내진설계)

  • Han, Sang Whan;Kim, Tae O;Ha, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.361-368
    • /
    • 2017
  • ASCE 7-10 defines the torsional irregular structure as the one that has large torsional responses caused by the eccentricity. The code requires that these structures should be designed abide by the torsional provisions. This study evaluates the influence of torsional provisions on the performance of the designed multiple steel moment frames with different eccentricity. In this study, 3D response history analyses are performed. The results show that the moment frame design according to the standard with torsional irregularity provisions showed larger performance as the eccentricity increased and the distribution of plastic hinges similarly to orthopedic structures.