• Title/Summary/Keyword: 비탄성 감쇠 계수

Search Result 80, Processing Time 0.023 seconds

Dynamic Deformation Characteristics of Cohesionless Soils in Korea Using Resonant Column Tests (공진주시험을 이용한 국내 비점성토 지반의 동적변형특성)

  • 김동수;추연욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.115-128
    • /
    • 2001
  • 본 논문에서는 반복하중이나 지진하중을 받는 지반-구조물 시스템의 설계에 필수적인 변수인 전단탄성계수와 감쇠비에 대한 연구를 국내에 존재하는 비점성토 지반에 대하여 수행하였다. 국내 퇴적토지반 및 풍화토지반에서 채취된 자연시료와 입도분포를 조정하여 제작한 시료를 포함하여 총 60개의 시료에 대하여 20kPa에서 500kPa의 구속응력 범위에서 공진주 시험을 수행하고, 이를 조립질 사질토, 실트 및 실트질 모래, 풍화토의 3개의 그룹으로 나누어 결과를 정리하였다. 저변형률 영역의 변형특성인 최대전단탄성계수와 최소감쇠비에 대하여 구속응력의 영향을 확인하였다. 최대전단탄성계수를 예측하는 경험식을 3개의 그룹별로 제안하였다. 최소감쇠비는 구속응력에 따른 분포영역을 제시하였다. 세립분이 적은 조립질 사질토의 경우, 비선형 변형특성이 구속응력의 영향을 뚜렷이 받고 있어 이를 주요한 변수로 고려하여 대표곡선과 분포영역을 제안하였다. 구속응력의 영향을 적게 받는 실트 및 실트질 모래와 풍화토는 구속응력에 관계없이 대표곡선과 분포영역을 제안하였다. 제안된 각 시료의 대표곡선과 기존의 Vucetic-Dobry와 Seed-Idriss가 제안한 곡선과 비교하였다. 본 논문의 연구결과는 국내지반의 비점성토 지반에 대한 지진해석이나 동하중을 받는 시스템의 해석시 유용하게 사용될 것으로 판단된다.

  • PDF

Dynamic Deformation Characteristics of Granite Weathered Soils Using RC/TS Tests (공진주/비틂전단시험을 이용한 화강풍화지반의 동적변형특성)

  • Kim, Dong-Soo;Ko, Dong-Hee;Youn, Jun-Ung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In Korea, around one - third of the country is occupied by granite, and granite weathered soils are widely distributed. Most of the research on this soil has been performed using reconstituted specimens because of the extreme difficulty of undisturbed sampling due to the sensitive particle structures. Therefore, the comparisons of deformational characteristics, which is expressed in terms of shear and Young's moduli and damping ratio, obtained from the undisturbed and reconstituted specimens are important for the reliable understanding of soil behavior. In this study, the resonant column and torsional shear tests were performed on granite weathered soils in Korea, and the deformation characteristics of undisturbed and reconstituted soil on granite weathered soils were evaluated and compared.

  • PDF

Damping and Shear Distribution in Adhesive Bonded Lap Joint with Viscoelastic Adhesive (점탄성접착결합의 감쇠 및 전단분포)

  • Hong, C. S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.4 no.3
    • /
    • pp.105-112
    • /
    • 1980
  • 정현적 응력을 받고 있는 정탄성 결합부의 에너지 손실을 여러 가지 인자를 고려하여 구하였다. 탄성접착결합부의 해를 구하고 탄성해의 전단계수를 복소전단계수로 대치하여 점탄성 접착결 합부의 전단변형분포를 구하였다. 주어진 접착제의 최대강쇠현상은 접착제의 강성과 피접착물의 비를 증가 시킴으로서 얻을 수 있다. 구조적 결합부에서 파괴가 일어나지 않도록 피접착부와의 강성비를 결정함에 있어 주의를 요한다.

Effects of Gradation on Dynamic properties of Sands (모래의 입도가 동적 특성에 미치는 영향)

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.7-16
    • /
    • 1987
  • The dynamic properties of soils are affected by parameters like, gradation characteristics, void ratio, confining pressure, etc. . This study mainly investigated experimentally the effect of gradation on the dynamic properties of sands with the effect of void ratio and confining pressure. Test results showed that shear modulus/damping ratio was increased/decreased with the decrease of void ratio and with the increase of confining pressure. When the fine content increased, shear modulus/damping ratio was decreased/increased. This study explained this phenomenon by the concept of the "effective number of contacts" and the "dead space".ot;dead space".uot;.

  • PDF

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

Q estimates using the Coda waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q 값 추정)

  • 이원상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.383-390
    • /
    • 1998
  • 이 연구의 목적은 경상분지에 설치되어있는 지진계에 기록된 자료를 이용하여 coda Q값을 계산하고 그것이 어느 정도 주파수에 의존하는 가를 추정해 보는 것이다. 분석한 주파수 영역은 1.5Hz에서 18Hz까지이다. 자료는 3조로 나누어 처리하였으며, 단일 산란 이론을 적용하였다. 그리고 매질의 특성을 살펴보고자 minimum mean free path 와 비탄성 감쇠계수를 계산했다. 계산 결과는 Q0값이 83.85 ~155.88로 단층대를 지나는 경로를 가진 자료에서 비교적 낮은 Q 값이 결정 되었고 n은 0.7615~1.0466이다.

  • PDF

Q Estimates Using the Coda Waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q값 추정)

  • 이기화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • In this study, coda Q has been determined by the single scattering model in the Kyeongsang Basin region using the decay of the amplitudes of coda waves on bandpass-filtered seismograms of local microearthquakes in the frequency range 1.5~18 Hz. Reported frequency dependence of Q is of the form $Q_C=Q_O ^n$$(83.9{ll}Q_0{ll}155.9,;0.76{ll}n{ll}1.05$. Considering a model incorporating both scattering and intrinsic attenuation, and assuming that the attenuation is entirely due to the scattering loss, the minimum mean free paths are about 51~56 km and the coefficients of inelastic attenuation(${\gamma}$) are between 0.0093 and 0.0098 were found. Earthquake-station paths pass through the fault zone show high attenuation and strong frequency dependency compared to other ones.

  • PDF

An Experimental Study on Dynamic Properties of Concrete with Vibration-Mitigation Materials (제진재 혼입 콘크리트의 동적물성에 관한 실험적 연구)

  • Chung, Young-Soo;Park, Yong-Goo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.261-270
    • /
    • 1999
  • In these days, construction activities have caused civil petitions associated with vibration-induced damages or nuisances. Therefore, it is strongly needed to develop a remedial technique to mitigate unfavorable effects. The objective of this experimental research is to investigate material and structural dynamic characteristics of vibration-controlled concretes which have been proportionally mixed with various vibration reducing material, such as latex, rubber powder, plastic resin, polystyrofoams and etc. Normal and high strength concrete specimens are also prepared for corresponding comparison. As part of the recycling research for obsolete rubber and plastic materials, 32 concrete cylinders and 10 concrete flexural beams have been made for material and structural dynamic properties, respectively. In accordance with the resonance test on concrete cylinders, it can be concluded that concrete with vibration-reducing material have relatively larger material damping ration than normal or high strength concrete. Styrofoam is determined to be very effective vibration-reducing mixtures. From the vibration test on 10 concrete flexural beams, meamwhile, of importance observations was that material damping ratio is very smaller than structural damping ratio of corresponding specimen. But further vibration test on more flexural beams should be strongly needed by varying support conditions.

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.