If the inside of a building collapses due to a disaster such as fire, collapse, or natural disaster, the physical security inside the building is likely to become ineffective. Here, physical security is needed to minimize the human casualties and physical damages in the collapsed building. Therefore, this paper proposes an algorithm to minimize the damage in a disaster situation by fusing existing research that detects obstacles and collapsed areas in the building and a deep learning-based object detection algorithm that minimizes human casualties. The existing research uses a single camera to determine whether the corridor environment in which the robot is currently located has collapsed and detects obstacles that interfere with the search and rescue operation. Here, objects inside the collapsed building have irregular shapes due to the debris or collapse of the building, and they are classified and detected as obstacles. We also propose a method to detect rescue requesters-the most important resource in the disaster situation-and minimize human casualties. To this end, we collected open-source disaster images and image data of disaster situations and calculated the accuracy of detecting rescue requesters in disaster situations through various deep learning-based object detection algorithms. In this study, as a result of analyzing the algorithms that detect rescue requesters in disaster situations, we have found that the YOLOv4 algorithm has an accuracy of 0.94, proving that it is most suitable for use in actual disaster situations. This paper will be helpful for performing efficient search and rescue in disaster situations and achieving a high level of physical security, even in collapsed buildings.
As XML has become an emerging standard for information exchange on the World Wide Web, it has gained attention in database communities to extract information from XML seen as a database model. XML queries are based on regular path queries, which find objects reachable by given regular expressions. To answer many kinds of user queries, it is necessary to evaluate queries that have multiple regular path expressions. However, previous work such as query rewriting and query optimization in the frame work of semistructured data has dealt with a single regular expression. For queries that have multiple regular expressions we suggest a two phase optimizing technique: 1. query rewriting using views by finding the mappings from the view's body to the query's body and 2. for rewritten queries, evaluating each query conjunct and combining them. We show that our rewriting algorithm is sound and our query evaluation technique is more efficient than the previous work on optimizing semistructured queries.
Kim, Jeongsoo;Lee, Chan-Woo;Park, Seung-Hwa;Lee, Jong-Hyun;Hong, Chang-Hee
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.12
/
pp.320-330
/
2020
Fire is difficult to achieve good performance in image detection using deep learning because of its high irregularity. In particular, there is little data on fire detection in underground utility facilities, which have poor light conditions and many objects similar to fire. These make fire detection challenging and cause low performance of deep learning models. Therefore, this study proposed a fire detection model using deep learning and estimated the performance of the model. The proposed model was designed using a combination of a basic convolutional neural network, Inception block of GoogleNet, and Skip connection of ResNet to optimize the deep learning model for fire detection under underground utility facilities. In addition, a training technique for the model was proposed. To examine the effectiveness of the method, the trained model was applied to fire images, which included fire and non-fire (which can be misunderstood as a fire) objects under the underground facilities or similar conditions, and results were analyzed. Metrics, such as precision and recall from deep learning models of other studies, were compared with those of the proposed model to estimate the model performance qualitatively. The results showed that the proposed model has high precision and recall for fire detection under low light intensity and both low erroneous and missing detection capabilities for things similar to fire.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
2004.11a
/
pp.543-547
/
2004
Visualization of construction process simulation and physical modeling were considered to overcome the limitations of current graphical simulation. The output of discrete-event simulation programs which are the most common mathematical statistical simulation tool for construction processes were analyzed for the visualization of earthmoving process that dealing with objects without fixed. Object-oriented models for equipment, material and work environments were devised to effectively visualize the numerical simulation results of the working time, the queuing time as well as the amount resources etc. The oscillation of the crane's cable and the lifted material that should be considered to rationally modeled and simulated by construction graphical simulation. The derived equation of motion was solved by numerical analysis procedure. Then obtained results was used for physical modeling.
Jeong Rok Lee;Dae Woong Lee;Sae Hyun Jeong;Sang Jeong
Journal of the Society of Disaster Information
/
v.19
no.4
/
pp.968-975
/
2023
Purpose: We would like to confirm that the false positive rate of flames/smoke is high when detecting fires. Propose a method and dataset to recognize and classify fire situations to reduce the false detection rate. Method: Using the video as learning data, the characteristics of the fire situation were extracted and applied to the classification model. For evaluation, the model performance of Yolov8 and Slowfast were compared and analyzed using the fire dataset conducted by the National Information Society Agency (NIA). Result: YOLO's detection performance varies sensitively depending on the influence of the background, and it was unable to properly detect fires even when the fire scale was too large or too small. Since SlowFast learns the time axis of the video, we confirmed that detects fire excellently even in situations where the shape of an atypical object cannot be clearly inferred because the surrounding area is blurry or bright. Conclusion: It was confirmed that the fire detection rate was more appropriate when using a video-based artificial intelligence detection model rather than using image data.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.4
/
pp.127-133
/
2009
To ensure access to rapidly growing video collection, video indexing is becoming more and more essential. A database for video should be build for fast searching and extracting the accurate features of video information with more complex characteristics. Moreover, video indexing structure supports efficient retrieval of interesting contents to reflect user preferences. In this paper, we propose semantic video retrieval method based on user preference. Unlikely the previous methods do not consider user preferences. Futhermore, the conventional methods show the result as simple text matching for the user's query that does not supports the semantic search. To overcome these limitations, we develop a method for user preference analysis and present a method of video ontology construction for semantic retrieval. The simulation results show that the proposed algorithm performs better than previous methods in terms of semantic video retrieval based on user preferences.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.33
no.4
/
pp.7-16
/
2005
Computer applications for engineering design evolve rapidly. Many design frameworks were developed by the simulation based systems so that organizations could achieve significant benefits due to cost reduction in designing. However, today’s transient design issue requires being adaptable to more complicated and atypical problems. In this paper the Multidisciplinary Language Runtime (MLR) design framework is developed. The MLR provides flexible and extensible interface between analysis modules and numerical analysis codes. It also supports Meta Modeling, Meta Variable, and XML script for atypical design formulation. By applying object-oriented design scheme to implement abstractions of the key components required for iterative systems analyses, the MLR provides flexible and extensible problem-solving environment.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.5
/
pp.32-37
/
2008
To ensure access to rapidly growing video collection, video indexing is becoming more and more important. In this paper, video ontology system for retrieving a video data based on a scene unit is proposed. The proposed system creates a semantic scene as a basic unit of video retrieval, and limits a domain of retrieval through a subject of that scene. The content of semantic scene is defined using the relationship between object and event included in the key frame of shots. The semantic gap between the low level feature and the high level feature is solved through the scene ontology to ensure the semantic-based retrieval.
Lee, Je-ma proposed ways like Chehyungkisang to judge each constitution, so, on the basis of this, we can judge constitution in various ways. Such a theory is based on behavior determinism's way of thinking of Lee, Je-ma. We can know this that form is not recognized as an object reflecting image, but a subjective concept from Tukyonyodun, Yimokbiku(ears, eyes, nose and mouth), Hameokjebok of Sungmyong Theory. Lee, Je-ma thought each part of human body has not only physical function but also complex temperative function. Putting this consideration and Jangbu Theory describing human body directly, together, it can be said that these all have an established theory on Chehyungkisang of constitution judgement. Thus, the following hypotheses are given. From Sadan Theory and Hwakchung Theory, strength of Jangbu of Sasangin is Pe>Bi>Shin>Kan in Taeyangin and Bi>Pe>Kan>Shin in Soyangin and Kan>Shin>Bi>Pe> in Taeumin and Shin>Kan>Pe>Bi in Soumin. The concept of Shinkihyuljung is related with creation of form and spirit of each Jangkuk and Aenoheerak(sorrow, anger, joy, pleasure). From this viewpoint, Sasangin can be classified into; Taeyangin into Shinkijunghyul type, Taeumin into Hyuljungkishin type, Soumin into Junghyuishinki type. Introduced a fixed way to explain of each constitution according to this strength relationship. I hope more lively discussions on Constitutional Medicine will be continued based on this attempt.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.