• Title/Summary/Keyword: 비정상 이벤트

Search Result 41, Processing Time 0.028 seconds

Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation (Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템)

  • Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1066-1074
    • /
    • 2014
  • In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.

Analysis of Unexpected Shutdown Based on Windows Event Log(EVTX) and its Applications in forensic (윈도우 이벤트 로그 기반 PC 비정상 종료 분석 및 활용방안)

  • Kim, Ha-Young;Park, Hyeon-Min;Kim, Gi-Bum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.33-36
    • /
    • 2022
  • 이벤트 로그(Event Log)는 윈도우 운영체제에서 시스템 로그를 기록하는 형식으로 시스템 운영에 대한 정보를 체계적으로 관리한다. 이벤트는 시스템 자체 또는 사용자의 특정 행위로 인해 발생할 수 있고, 그러한 이벤트 로그는 시스템의 시작과 종료뿐만 아니라 기업 보안 감사, 악성코드 탐지 등 행위의 근거로 사용될 수 있다. 본 논문에서는 PC 종료 관련 실험을 통해 이벤트 로그와 ID를 분석하였다. 분석 결과를 통해 PC의 정상 및 비정상 종료 여부를 판단하여, 현장 압수·수색 시 해당 저장매체에 대해 선별압수·매체압수의 해당 여부 식별이 가능하다. 본 연구는 현장수사관이 디지털증거 압수·수색 시 절차적 적법성과 증거능력 확보의 근거 활용에 기여할 수 있다.

Visual Analytics using Topic Composition for Predicting Event Flow (토픽의 조합으로 이벤트 흐름을 예측하기 위한 시각적 분석 시스템)

  • Yeon, Hanbyul;Kim, Seokyeon;Jang, Yun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.768-773
    • /
    • 2015
  • Emergence events are the cause of much economic damage. In order to minimize the damage that these events cause, it must be possible to predict what will happen in the future. Accordingly, many researchers have focused on real-time monitoring, detecting events, and investigating events. In addition, there have also been many studies on predictive analysis for forecasting of future trends. However, most studies provide future tendency per event without contextual compositive analysis. In this paper, we present a predictive visual analytics system using topic composition to provide future trends per event. We first extract abnormal topics from social media data to find interesting and unexpected events. We then search for similar emergence patterns in the past. Relevant topics in the past are provided by news media data. Finally, the user combines the relevant topics and a new context is created for contextual prediction. In a case study, we demonstrate our visual analytics system with two different cases and validate our system with possible predictive story lines.

Combining Multiple HMMs to Improve Intrusion Detection system with Sequential Event (순서적 이벤트에 기반한 침입탐지시스템의 성능향상을 위한 다중 HMM의 모델 결합)

  • 최종호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.238-240
    • /
    • 2000
  • 침입탐지시스템은 침입탐지 기법에 따라 크게 오용탐지시스템과 비정상행위탐지시스템으로 나뉜다. 비정상 행위 탐지시스템은 정상사용행위를 모델링한 후 현재 관찰중인 행위가 정상에서 벗어나는지를 검사한다. 시스템 사용시 발생하는 각 이벤트는 동시에 여러 가지 정보를 담고있으므로 여러 각도에서 모델링될 수 있다. 따라서 여러 결과를 종합해서 판정의 안정성을 높을 수 있다. 본 논문에서는 이벤트의 시스템호출에 평가결과와 BSM감사정보 중 시스템호출관련 정보, 파일 접근관련 정보, 이 둘을 모두 고려한 정보를 통합한 평가결과를 투표방식으로 결합하여 판정하는 기법을 제안하였다. 실험결과 두 모델을 별도로 적용하는 경우보다 나아진 판정성능을 보여주었다.

  • PDF

Time Series Modeling Pipeline for Urban Behavioral Demand Prediction under Uncertainty (COVID-19 사례를 통한 도시 내 비정상적 수요 예측을 위한 시계열 모형 파이프라인 개발 연구)

  • Minsoo Jin;Dongwoo Lee;Youngrok Kim;Hyunsoo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • As cities are becoming densely populated, previously unexpected events such as crimes, accidents, and infectious diseases are bound to affect user demands. With a time-series prediction of demand using information with uncertainty, it is impossible to derive reliable results. In particular, the COVID-19 outbreak in early 2020 caused changes in abnormal travel patterns and made it difficult to predict demand for time series. A methodology that accurately predicts demand by detecting and reflecting these changes is, therefore, required. The current study suggests a time series modeling pipeline that automatically detects and predicts abnormal events caused by COVID-19. We expect its wide application in various situations where there is a change in demand due to irregular and abnormal events.

An Intrusion Detection System Using Privilege Change Event Modeling based on Hidden Markov Model (권한 이동 이벤트를 이용한 은닉 마르코프 모델 기반 침입탐지 시스템)

  • 박혁장;장유석;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.769-771
    • /
    • 2001
  • 침입의 궁극적 목표는 루트 권한의 획득이라고 할 수 있는데 최근 유행하고 있는 버퍼플로우(Buffer Over flow)등이 대표적이다. 최근 날로 다양화되는 이런 침입방법들에 대응하기 위해 비정상행위 탐지기법 연구가 활발한데 대표적인 방법으로는 통계적 기법과 전문가시스템, 신경망 등을 들 수 있다. 본 논문에서 제안하는 침입탐지시스템은 권한 이동 관련 이벤트의 추출 기법을 이용하여 Solaris BSM 감사 기록에서 추출된 정보 이벤트들을 수집한 후 은닉 마르코프 모델(HMM)로 모델링하여 정상행위 모델들을 만든다. 추론 및 판정시에는 이미 만들어진 정상행위 모델을 사용하여 새로 입력된 사용자들의 시퀀스를 비교 평가하고, 이를 바탕으로 정상 권한이동과 침입시의 권한이동의 차이를 비교하여 침입여부를 판정한다. 실험결과 HMM만을 사용한 기존 시스템에 비해 유용함을 알 수 있었다.

  • PDF

Performance Improvement of Infusion Detection System based on Hidden Markov Model through Privilege Flows Modeling (권한이동 모델링을 통한 은닉 마르코프 모델 기반 침입탐지 시스템의 성능 향상)

  • 박혁장;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.674-684
    • /
    • 2002
  • Anomaly detection techniques have teen devised to address the limitations of misuse detection approach for intrusion detection. An HMM is a useful tool to model sequence information whose generation mechanism is not observable and is an optimal modeling technique to minimize false-positive error and to maximize detection rate, However, HMM has the short-coming of login training time. This paper proposes an effective HMM-based IDS that improves the modeling time and performance by only considering the events of privilege flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, as well as no loss of recognition performance.

Irregular Sound Detection using the K-means Algorithm (K-means 알고리듬을 이용한 비정상 사운드 검출)

  • Lee Jae-yeal;Cho Sang-jin;Chong Ui-pil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.341-344
    • /
    • 2004
  • 발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.

  • PDF

Application of Hidden Markov Model to Intrusion Detection System (침입탐지 시스템을 위한 은닉 마르코프 모델의 적용)

  • Choe, Jong-Ho;Jo, Seong-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.6
    • /
    • pp.429-438
    • /
    • 2001
  • 정보통신 구조의 확산과 함께 전산시스템에 대한 침입과 피해가 증가되고 있으며 침입탐지 시스템에 대한 관심과 연구가 늘어나고 있다. 본 논문에서는 은닉 마르코프 모델(HMM)을 이용하여 사용자의 정상행위에서 생성된 이벤트ID 정보를 모델링한 후 사용자의 비정상행위를 탐지하는 침입탐지 시스템을 제안한다. 전처리를 거친 이벤트ID열은 전방향-역방향 절차와 Baum-Welch 재추정식을 이용하여 정상행위로 구축된다. 판정은 전방향 절차를 이용해서 판정하려는 열이 정상행위로부터 생성되었을 확률을 계산하며, 이 값을 임계값과 비교함으로써 수행된다. 실험을 통해 침입탐지를 위한 최적의 HMM 매개변수를 결정하고 사용자 구분이 없는 단일모델링, 사용자별 모델링, 사용자 그룹별 모델링 방식을 비교하여 정상행위 모델링 성능을 평가하였다. 실험결과 제안한 시스템이 발생한 침입을 적절히 탐지함을 확인할 수 있었지만, 신뢰도 높은 침입탐지 시스템의 구축을 위해서는 보다 정교한 모델의 클러스터링이 필요함을 알 수 있었다.

  • PDF

Refining massive event logs to evaluate performance measures of the container terminal (컨테이너 터미널 성능평가를 위한 대용량 이벤트 로그 정제 방안 연구)

  • Park, Eun-Jung;Bae, Hyerim
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.11-27
    • /
    • 2019
  • There is gradually being a decrease in earnings rate of the container terminals because of worsened business environment. To enhance global competitiveness of terminal, operators of the container terminal have been attempting to deal with problems of operations through analyzing overall the terminal operations. For improving operations of the container terminal, the operators try to efforts about analyzing and utilizing data from the database which collects and stores data generated during terminal operation in real time. In this paper, we have analyzed the characteristics of operating processes and defined the event log data to generate container processes and CKO processes using stored data in TOS (terminal operating system). And we have explained how imperfect event logs creating non-normal processes are refined effectively by analyzing the container and CKO processes. We also have proposed the framework to refine the event logs easily and fast. To validate the proposed framework we have implemented it using python2.7 and tested it using the data collected from real container terminal as input data. In consequence we could have verified that the non-normal processes in the terminal operations are greatly improved.

  • PDF