In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.33-36
/
2022
이벤트 로그(Event Log)는 윈도우 운영체제에서 시스템 로그를 기록하는 형식으로 시스템 운영에 대한 정보를 체계적으로 관리한다. 이벤트는 시스템 자체 또는 사용자의 특정 행위로 인해 발생할 수 있고, 그러한 이벤트 로그는 시스템의 시작과 종료뿐만 아니라 기업 보안 감사, 악성코드 탐지 등 행위의 근거로 사용될 수 있다. 본 논문에서는 PC 종료 관련 실험을 통해 이벤트 로그와 ID를 분석하였다. 분석 결과를 통해 PC의 정상 및 비정상 종료 여부를 판단하여, 현장 압수·수색 시 해당 저장매체에 대해 선별압수·매체압수의 해당 여부 식별이 가능하다. 본 연구는 현장수사관이 디지털증거 압수·수색 시 절차적 적법성과 증거능력 확보의 근거 활용에 기여할 수 있다.
Emergence events are the cause of much economic damage. In order to minimize the damage that these events cause, it must be possible to predict what will happen in the future. Accordingly, many researchers have focused on real-time monitoring, detecting events, and investigating events. In addition, there have also been many studies on predictive analysis for forecasting of future trends. However, most studies provide future tendency per event without contextual compositive analysis. In this paper, we present a predictive visual analytics system using topic composition to provide future trends per event. We first extract abnormal topics from social media data to find interesting and unexpected events. We then search for similar emergence patterns in the past. Relevant topics in the past are provided by news media data. Finally, the user combines the relevant topics and a new context is created for contextual prediction. In a case study, we demonstrate our visual analytics system with two different cases and validate our system with possible predictive story lines.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.238-240
/
2000
침입탐지시스템은 침입탐지 기법에 따라 크게 오용탐지시스템과 비정상행위탐지시스템으로 나뉜다. 비정상 행위 탐지시스템은 정상사용행위를 모델링한 후 현재 관찰중인 행위가 정상에서 벗어나는지를 검사한다. 시스템 사용시 발생하는 각 이벤트는 동시에 여러 가지 정보를 담고있으므로 여러 각도에서 모델링될 수 있다. 따라서 여러 결과를 종합해서 판정의 안정성을 높을 수 있다. 본 논문에서는 이벤트의 시스템호출에 평가결과와 BSM감사정보 중 시스템호출관련 정보, 파일 접근관련 정보, 이 둘을 모두 고려한 정보를 통합한 평가결과를 투표방식으로 결합하여 판정하는 기법을 제안하였다. 실험결과 두 모델을 별도로 적용하는 경우보다 나아진 판정성능을 보여주었다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.2
/
pp.80-92
/
2023
As cities are becoming densely populated, previously unexpected events such as crimes, accidents, and infectious diseases are bound to affect user demands. With a time-series prediction of demand using information with uncertainty, it is impossible to derive reliable results. In particular, the COVID-19 outbreak in early 2020 caused changes in abnormal travel patterns and made it difficult to predict demand for time series. A methodology that accurately predicts demand by detecting and reflecting these changes is, therefore, required. The current study suggests a time series modeling pipeline that automatically detects and predicts abnormal events caused by COVID-19. We expect its wide application in various situations where there is a change in demand due to irregular and abnormal events.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.769-771
/
2001
침입의 궁극적 목표는 루트 권한의 획득이라고 할 수 있는데 최근 유행하고 있는 버퍼플로우(Buffer Over flow)등이 대표적이다. 최근 날로 다양화되는 이런 침입방법들에 대응하기 위해 비정상행위 탐지기법 연구가 활발한데 대표적인 방법으로는 통계적 기법과 전문가시스템, 신경망 등을 들 수 있다. 본 논문에서 제안하는 침입탐지시스템은 권한 이동 관련 이벤트의 추출 기법을 이용하여 Solaris BSM 감사 기록에서 추출된 정보 이벤트들을 수집한 후 은닉 마르코프 모델(HMM)로 모델링하여 정상행위 모델들을 만든다. 추론 및 판정시에는 이미 만들어진 정상행위 모델을 사용하여 새로 입력된 사용자들의 시퀀스를 비교 평가하고, 이를 바탕으로 정상 권한이동과 침입시의 권한이동의 차이를 비교하여 침입여부를 판정한다. 실험결과 HMM만을 사용한 기존 시스템에 비해 유용함을 알 수 있었다.
Anomaly detection techniques have teen devised to address the limitations of misuse detection approach for intrusion detection. An HMM is a useful tool to model sequence information whose generation mechanism is not observable and is an optimal modeling technique to minimize false-positive error and to maximize detection rate, However, HMM has the short-coming of login training time. This paper proposes an effective HMM-based IDS that improves the modeling time and performance by only considering the events of privilege flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, as well as no loss of recognition performance.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.341-344
/
2004
발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.
정보통신 구조의 확산과 함께 전산시스템에 대한 침입과 피해가 증가되고 있으며 침입탐지 시스템에 대한 관심과 연구가 늘어나고 있다. 본 논문에서는 은닉 마르코프 모델(HMM)을 이용하여 사용자의 정상행위에서 생성된 이벤트ID 정보를 모델링한 후 사용자의 비정상행위를 탐지하는 침입탐지 시스템을 제안한다. 전처리를 거친 이벤트ID열은 전방향-역방향 절차와 Baum-Welch 재추정식을 이용하여 정상행위로 구축된다. 판정은 전방향 절차를 이용해서 판정하려는 열이 정상행위로부터 생성되었을 확률을 계산하며, 이 값을 임계값과 비교함으로써 수행된다. 실험을 통해 침입탐지를 위한 최적의 HMM 매개변수를 결정하고 사용자 구분이 없는 단일모델링, 사용자별 모델링, 사용자 그룹별 모델링 방식을 비교하여 정상행위 모델링 성능을 평가하였다. 실험결과 제안한 시스템이 발생한 침입을 적절히 탐지함을 확인할 수 있었지만, 신뢰도 높은 침입탐지 시스템의 구축을 위해서는 보다 정교한 모델의 클러스터링이 필요함을 알 수 있었다.
There is gradually being a decrease in earnings rate of the container terminals because of worsened business environment. To enhance global competitiveness of terminal, operators of the container terminal have been attempting to deal with problems of operations through analyzing overall the terminal operations. For improving operations of the container terminal, the operators try to efforts about analyzing and utilizing data from the database which collects and stores data generated during terminal operation in real time. In this paper, we have analyzed the characteristics of operating processes and defined the event log data to generate container processes and CKO processes using stored data in TOS (terminal operating system). And we have explained how imperfect event logs creating non-normal processes are refined effectively by analyzing the container and CKO processes. We also have proposed the framework to refine the event logs easily and fast. To validate the proposed framework we have implemented it using python2.7 and tested it using the data collected from real container terminal as input data. In consequence we could have verified that the non-normal processes in the terminal operations are greatly improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.