Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1330-1332
/
2015
최근 지능형 감시 시스템에서 비정상 행동들을 자동으로 감지하는 연구가 활발히 진행되고 있다. 그러나 해결하기 힘든 몇 가지 이슈들이 있는데, 주어진 입력 영상에서 군중들이 중첩될 때 각각의 객체를 인식하는데 어려움이 있다는 점과 비정상 행동을 나타내는 훈련 데이터셋이 제한적이라는 점이다. 이러한 문제들을 해결하기 위해 우리는 군중 영상에서 비정상 행동들을 인식하는 새로운 프레임워크를 제안한다. 제안된 방법은 크게 특징추출모듈과 추출된 특징들을 이용한 행동인식모듈로 구성된다. 중첩문제를 해결하기 위해 움직임 에너지와 고정 에너지를 특성으로 정의하였고 위에 언급한 특징추출모듈에서 두 에너지 값을 계산한다. 그리고 정상/비정상 행동들은 HMM과 최적의 임계값을 도출하는 알고리즘을 사용하는 행동인식모듈에 의해 분류된다. 우리가 제안한 방법은 인공 데이터셋과 실제 비디오 영상 데이터셋을 이용한 실험에 의해 증명한다.
Park, Seung-Jin;Oh, Seung-Geun;Kang, Bong-Su;Park, Dai-Hee
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.347-350
/
2011
감시카메라 환경에서의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지 및 인식하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 움직임 벡터를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지자로 설계하였다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.
Proceedings of the Korean Society of Disaster Information Conference
/
2016.11a
/
pp.334-338
/
2016
본 연구에서는 한국공항의 테러방비와 특수경비원들의 효율적 보안검색을 위하여 비정상 행동탐지기법과 관련한 각 국의 프로그램 및 자료를 조사 분석하였다. 그리고 우리나라의 상황에 적합한 한국형 행동탐지기법 프로그램을 개발을 제시하였다. 우선 한국공항 특수경비원들의 비정상 행동탐지기법 도입을 위하여 각국의 프로파일링의 유형과 행동탐지기법을 조사 분석하고 한국형 행동탐지기법 프로그램을 자체 개발하는 연구를 수행하였다. 이를 통하여 국내 항공 테러방비를 위한 비정상행정탐지기법 도입의 필요성과 특수경비원의 보안검색 효율화와 항공보안의 학문적 도약을 위한 기초적 자료를 제시하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.304-306
/
2006
앞으로 있을 유비쿼터스 환경을 위해 Situation Aware 기반의 RFID 시스템의 다양한 응용사례로 비정상행동 예측 시스템을 제안하였고, 이렇게 제안된 SA-RFID 시스템을 바탕으로 비정상 행동 예측 시스템을 시나리오 별 모델로 분류하여 각 모델별 동작 메커니즘과 세부 고려사항등을 제안한다. 또한 이러한 각각의 모델들의 프로토타입 테스팅을 통해 모델들의 중첩으로 이루어진 전체 시스템을 모델별 평가를 통한 신뢰도의 합으로 검증 하고자 한다.
The method to get the feature have been proposed to recognize the user activity by setting specific action for making the user independent result in previous research. However, it was only applied in specific environment and it was difficult to implement because it regarded only some specific feature as the recognized object. To improve this problem we detected the normality/abnormality of the activity based on the repetition and the continuity of the past activity pattern. We applied the unsupervised learning method, not supervised, and clustered the data which was collected within a certain period of time and we regarded it as the basis of the evaluation of the repetition. We demonstrated to be able to detect the abnormal activity based on wether the data was generated repeatedly.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.463-468
/
2010
본 논문은 본 연구팀이 행동패턴 분석을 위하여 개발한 BPP(Behavior Pattern Prediction)알고리즘의 가중치(weight) 속성을 객관적으로 수식화 하는 방법과 가중치와 행동 프로파일을 이용하여 정상/비정상 행동여부를 판단하는 ABA(Abnormal Behavior Analysis) 알고리즘을 제안한다. 가중치는 거주자의 방과 행동 사이의 연관성을 나타내며 가중치가 제한된 범위 내에서 증가 할수록 행동에 대한 관심이 크다. 구축한 사용자 프로파일의 주요 구성 요소로는 행동이 지속된 시간 과 행동 발생 횟수이다. ABA 알고리즘은 가중치와 행동 발생 횟수, 행동 지속시간과의 상관분석 결과를 참조 하였으며, 이산 가중치 데이터를 분석하여 비정상적인 행동을 탐지한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.832-834
/
2005
유비쿼터스 컴퓨팅의 중요한 핵심 분야인 Situation-Aware 컴퓨팅과 RFID 시스템을 결합한 SA-RFID 시스템을 통해, 제한된 장소에서 범죄나 사고 같은 비정상적인 행동을 예측하기 위한 시스템을 제안하였다. SA-RFID 시스템을 이용한 비정상 행동 예측 시스템은 변형된 SA-RFID Reader 시스템 아키텍쳐와 그에 특화된 SA Middleware를 통해 설계되었고, 비정상 행동 판단 시나리오를 이용하여 명실상부 유비쿼터스 시대에 걸 맞는, 사용자에게 보다 더 안전하고 편안한 생활을 보장해주는 서비스를 제공하게 될 것이다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.8
/
pp.731-737
/
2014
This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.
Kim, Jin-Gyu;Kim, Jong-Sun;Joo, Young-Hoon;Park, Jin-Bae
Proceedings of the KIEE Conference
/
2011.07a
/
pp.1910-1911
/
2011
본 논문에서는 네트워크 카메라를 이용한 물체 감시 및 비정상 행위의 판단을 위한 실시간 시스템을 제안한다. 제안된 시스템은 먼저 물체의 감시를 위해 SIFT 알고리즘에 기반으로 감시 물체의 특징 정보를 DB화 하고, 히스토그램(Histogram)기법을 활용하여 감시지역을 설정한다. 또한 인간의 행동 및 비정상 행위를 판단하기 위하여, 가상 인간 스켈레톤 모델을 이용하여 입력된 영상에서의 인간의 특징점을 추출한다. 추출된 특징점을 바탕으로 PCA(Principal Component Analysis)를 이용하여 인간의 움직임을 보다 정확하게 표현할 수 있는 특징벡터를 생성하였다. 생성된 특징벡터를 기반으로 퍼지분류기를 이용하여 인간의 행동을 분류하고, 생성된 특징벡터와 특정물체의 거리를 기반으로 인간의 비정상행위를 판단한다. 제안된 방법은 실험을 통해 시스템의 응용 가능성을 증명한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.6
/
pp.183-190
/
2011
In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.