• Title/Summary/Keyword: 비정상응답

Search Result 53, Processing Time 0.021 seconds

A Study on Unsteady Responses of Flames - Calculation of Flame Transfer Function in a Subscale Combustor (화염의 비정상 응답 특성 연구-화염 전달 함수 산출)

  • Sohn, Chae Hoon;Guillaume, Jourdain;Kim, Young Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.107-108
    • /
    • 2015
  • The acoustic optimization of a swirl coaxial jet injector mounted upstream a combustion chamber is investigated to tackle combustion instabilities. The least damped modes are extracted with the help of the dynamic mode decomposition (DMD). The sensitivity of the heat release perturbation to the velocity perturbation for the second longitudinal mode is investigated by combining the Crocco's equation and the inhomogeneous wave equation and computing the flame transfer function (FTF). DMD and FTF results agree in terms of the optimized injector length.

  • PDF

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

Vital Sign Monitoring System with Routing and Query of Wireless Sensor Node on Mobile Environment (모바일 환경에서 질의응답이 가능한 무선센서노드 라우팅 생체신호 모니터링 시스템)

  • Lee, Seung-Chul;Toh, Sing-Hui;Do, Kyeong-Hoon;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.357-360
    • /
    • 2008
  • Vital sign monitoring system using IEEE 502.IS.4 based wireless sensor network(WSN) is designed and developed on mobile environment and sensor node platform. WSN and CDMA are integrated to create a wide coverage to support various environments like inside and outside. We developed query processor to use selective any devices(ECG, Blood pressure and sugar module) and control of the self-organizing network of sensor nodes in a wireless sensor network. Vital sign from wireless medical any devices are analysed in cell phone first for real time signal analyses and the abnormal vital signs are sent and save to hospital server for detail signal processing. wireless signal traffic in wireless sensor network environment or data communication inside the cell phone is reduced.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust: Part 2 (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구: Part 2)

  • Heo, Jun-Young;Kim, Ki-Wan;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.123-128
    • /
    • 2012
  • According to the sequence of pintle operation, the performance characteristics of pintle nozzles are analyzed. The pintle movement was simulated using unsteady numerical techniques, the response lag and sensitivity at the chamber and nozzle are estimated for movable pintle. Three operation sequences of the pintle are considered for evaluating whether the rate of the chamber pressure increase and the operation sequence will have any significant impact towards the rocket performance. Three operation sequencies are as following; the pintle moves toward the nozzle throat, it turns instantly (case 1), stops at the nozzle throat for some time(0.5sec) (case 2), and stops at the nozzle throat (case 3). As a result, the dynamic characteristics according to the operation sequence and pintle shape were analyzed to take account the rocket performance.

  • PDF

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes (디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측)

  • Kim, Yongse;Kong, Dongjae;Shin, SangJoon;Park, Kihoon;Im, Kangsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.24-35
    • /
    • 2018
  • Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

Dual-Limit Cycle Oscillation of 2D Typical Section Model considering Structural Nonlinearities (구조 비선형을 고려한 이차원 단면 날개 모델의 이중 제한 주기 운동)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.28-33
    • /
    • 2005
  • Nonlinear aeroelastic characteristics of a two dimensional typical section model with bilinear plunge spring are investigated. Doublet-point method(DPM) is used for the calculation of supersonic unsteady aerodynamic forces which are approximated by using the minimum-state approximation. For nonlinear flutter analysis structural nonlinearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and nonlinear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are investigated.

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Votex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.52-60
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Analysis of Dynamic Characteristics of Fluidic Thrust Vector Control for the Over-expanded Supersonic Jet (과팽창 초음속제트의 방향 제어를 위한 유체역학적 제어의 동특성 연구)

  • Heo, Jun-Young;Yoo, Kwang-Hee;Cho, Min-Kyung;Sung, Hong-Gye;Lee, Yeol;Jeon, Young-Jin;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.123-127
    • /
    • 2009
  • The purpose of this research is to investigate the dynamic characteristics of fluidic thrust vector control using the co-flow injection. In previous research, both numerical and experimental approaches for steady state were conducted to investigate operation-parameters and detail flow structure of the fluidic thrust vector control system. Based upon the previous results, numerical unsteady calculation was conducted to analyze the dynamic characteristics of jet up- and down-ward vectoring so that the transition time and the pressure distribution along the wall, and so on were investigated.

  • PDF

Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame (전개확산제트화염과 정체점 확산화염과의 유사성)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Vortex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman#s detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. The results show that fuel-side and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF