이 논문의 목적은 역 가우스 분포의 모수비가 관심의 대상일 때, 그 모수비에 대한 무정보적 사전분포를 구하는데 있다. 특별히, 모수비에 대한 확률대응사전분포와 기준 사전분포를 제안하였다. 먼저, 관심의 대상이 되는 모수에 대해 모수 직교화 변환을 구하고, 모수 직교화 변환을 이용하여 확률대응사전분포와 기준사전분포를 구하였다. 특히 확률대응사전분포의 일치차수는 1차임을 보였으며 2차 확률대응사전분포는 존재하지 않음을 보였다. 또한 제안된 사전분포에 의해 유도된 사후분포는 적절 분포임을 증명하였다. 모의 실험을 통하여 확률대응사전분포와 기준사전분포를 비교했으며, 실제자료를 이용하여 분석하는 예를 보였다.
본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.
베이시안 결정론에서 사전 확률 분포함수는 표본을 추출하기 이전에 추정하여야 한다. 대개 는 분포함수군을 먼저 선택한 후, 그 중 하나를 결정자의 경험을 통하여 선택한다. 이러한 주관적인 사전 확률 분포함수의 선택방법이 베이시안 결정론에 대한 주요비판이 항상 되어 왔다. 본 논문에서는 최대 엔트로피 이론을 이용하여 우리 주변의 의사결정에 많이 이용되 는 정보들에 관한 객관적인 사전 확률 분포함수들을 구하였다. 그 결과는 히스토그램 형태 의 분포함수가 된다. 그러나 사전 정보가 많은 경우에는 최대 엔트로피 모형의 해를 구하기 위하여 복잡한 비선형 연립방정식을 풀어야 하는데, 구체적인 형태의 함수를 구하지 못하는 경우가 대부분이다. 이 때에는 초소의 크로스 엔트로피 모형을 이용하여 사전확률 분포함수 를 구하는 것이 편리하다. 그밖에 엔트로피 이론으로 구한 사전확률 분포함수의 확률적 수 렴성을 증명하였다.
본 논문에서는 Burr Type-X 분포하에서 stress-strength 의 신뢰도를 추정하는 데 사용되어지는 비정보적 사전분포들을 개발하는 것이다. 개발된 reference 사전분포가 first order matching 사전분포가 된다는 것이 밝혀졌으며, 또한 matching 사전분포하에서 사후분포의 타당성을 밝혔다. 소표본하에서, 고전적 포함확률들이 주여져 있다.
Journal of the Korean Data and Information Science Society
/
제20권1호
/
pp.39-48
/
2009
피셔 정보행렬은 모수 추론에서 중요한 역할을 한다. 특히 비정보 사전분포를 이용한 사후분포로 유도하는 객관적 베이지안 추론에서 사용된다. 또한 기하학에서는 거리함수의 한 예로서 이용된다. 모수가 많아질수록 피셔 정보행렬의 계산이 복잡하여진다. 따라서 본 논문에서는 매스매티카를 이용하여 계산상 필요한 프로그램을 적용시켜 신뢰성 이론에서 사용되는 3-모수 와이블분포에 대한 피셔 정보행렬을 유도하였다.
본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.
Communications for Statistical Applications and Methods
/
제3권3호
/
pp.1-9
/
1996
본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.
본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.
본 논문은 스미스의 베이지안 소프트웨어 신뢰도 성장모형을 기반으로 테스팅 단계에서의 소프트웨어 신뢰도에 대한 두가지 베이즈 추정량에 그에 대한 평가 알고 리즘을 제안하는데 목적이 있다. 그 방법으로 사전정보 클래스로서 일양사전분포보다 더 일반적인 베타사전분포 BE(a.b)를 사용하였다. 그 연구 과정으로 베이지안 추정절 차에 있어서 제곱오차결손함수와 해리스결손함수를 고려하고, 컴퓨터 시뮬레이션을 통 해서 소프트웨어 신뢰도에 대한 베이즈추정량들과 그에 따른 알고리즘을 이용하여 평 균자승오차 성능을 비교한다. 연구 결과로써 a가 크면 클수록 그리고 b가 적으면 적을 수록 해리스결손함수하의 소프트웨어 신뢰도의 베이즈추정량이 평균자승오차 성능의 관점에서는 더욱 유효하고, a 가 b보다 더 클 때 공액사전분포인 베타사전분포상의 소 프트웨어 신뢰도의 베이즈추정량이 비정보사전분포인 일양사전분포상에서 소프트웨어 신뢰도의 베이즈추정량보다는 성능이 더 좋다는 결론을 얻는다.
본 논문은 온라인 문자 인식을 연속 밀도 HMM의 구조의 최적화 문제를 다룬다. 최적이란 최소한의 모델 파라미터를 사용하여 최소한의 오류를 허용하는 것이라고 정의할 수 있다. 본 연구에서는 HMM 구조의 최적화를 위해 Bayesian 모델 선택 방법론을 사용한다. 먼저 잘 알려진 BIC(Bayesian Information Criterion)을 적용해보고, 그것을 HMM의 복잡한 구조에 적합하도록 본 논문에서 제안한 HBIC(HMM-Oriented BIC)와 비교해본다. BIC는 모델의 사전 확률 분포를 추정하지 않고 다변량 정규분포라고 가정하는데 비해 HBIC는 모델의 각 파라미터로부터 사전 확률을 추정한 후 그것들을 사용함으로써 더 좋은 결과를 얻도록 한다. 실험 결과 BIC와 HBIC 둘 다 기존 방법보다 모델의 파라미터 수를 현저히 감소시킴을 확인했고, HBIC가 BIC에 비해 더 적은 수의 파라미터를 사용해도 비슷한 인식률을 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.