• Title/Summary/Keyword: 비접촉 검사 시스템

Search Result 39, Processing Time 0.022 seconds

광산란을 이용한 미소표면결함의 비접촉측정법에 관한 연구

  • 강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.113-120
    • /
    • 1991
  • 근년, 정밀가공기술의 진보에 따라 AI 합금이나 동등의 연질금속을 이용한 고출력 Laser용 Mirror, 전자계산용 자기Disc기반, Laser Printer용 PloygonMirror등의 Opto-electronics 부품이 경면(Mirror Surface)절삭가공에 의해서, 또 LSI용 Silicon Wafer의 가공은 연마가공에 의해서 nmRmax의 표면조도로 마무리 가공되고 있다. 본 연구에서는 고출력 Laser용 Mirror, 자기Disc기반, Silicon Wafer와 같은 경면(표면 조도 submicron이하)에 존재하는 미소표면결함을 정량적이며, 고속측정이 가능한 방법인 새로운 측정법을 제안하고, 이 시스템을 생산라인에서 가공과 동시에 검사하는 In-process측정이 가능한 특정 시스템의 개발을 최종목표로 하고 있다.

Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT (웨이브렛 변환과 SH-EMAT을 이용한 배관 용접부 결함 검출)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1511-1519
    • /
    • 2012
  • Pipe structures contain many welded zones, and ultrasonic tests are increasingly being performed by using automated testing devices in order to evaluate the weld integrity. An electromagnetic acoustic transducer (EMAT) is a noncontact transducer that can transmit or receive ultrasonic waves without a couplant. Furthermore, it can easily generate specific guided waves such as SH (shear horizontal) or Lamb waves by altering the design of the coil and magnet. Therefore, an EMAT should be useful for application to an automated ultrasonic inspection system. In this study, SH waves generated using an EMAT were applied to inspect the pipe-weld zone. To analyze the specific SH mode (SH0) from the SH wave signals, wavelet transform was applied. It was found that flaws could be detected precisely because the intensity of the $SH_0$ mode-frequency, which is analyzed by using wavelet transform, is proportional to the length of the flaw.

Trend in Industrial Terahertz Technologies (산업용 테라헤르츠 기술동향)

  • Moon, K.;Lee, E.S.;Lee, I.M.;Park, D.W.;Kim, H.S.;Park, J.W.;Han, S.P.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.3
    • /
    • pp.56-67
    • /
    • 2017
  • 오랫동안 미개척 주파수 대역이었던 테라헤르츠 대역은 소자 및 시스템 기술 연구성과의 축적과 기술 성숙 과정을 거쳐, 최근 다수의 상용화 시스템이 출시되는 등 산업 분야에의 응용이 확산되었다. 특히, 투과 이미징이 가능한 테라헤르츠 이미징 시스템은 산업 분야에서 비접촉 비파괴 품질검사 분야 등에 많은 응용이 기대되고 있다. 이밖에 분광 기술에 기반을 둔 막 두께 측정 시스템, 초고속 통신 시스템 등도 향후 중요한 테라헤르츠 기술 응용 분야로 여겨지고 있다. 본고에서는 테라헤르츠 응용 기술에 관한 최근의 연구 동향을 간략히 살펴보고, 한국전자통신연구원 전파위성연구본부 테라헤르츠 창의원천연구실에서 주력해 온 포토닉스 기반 테라헤르츠 소자 및 시스템에 관해 상세히 소개한다.

Application of Principal Component Analysis in Automobile Body Assembly : Case Study (자동차 차체 조립공장에서 주성분 분석의 응용 : 사례 연구)

  • Lee, Myung-D.;Lim, Ik-Sung;Kim, Eun-Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Multivariate analysis is a rapidly expanding approach to data analysis. One specific technique in multivariate analysis is Principal Component Analysis (PCA). PCA is a statistical technique that linearly transform a given set of variables into a new set of composite variables. These new variables are orthogonal to each other and capture most of the information in the original variables. PCA is used to reduce the number of control points to be checked by measurement system. Therefore, the structure of the data set is simplified significantly It is also shown that eigenvectors obtained by conducting principal component analysis on the basis of the covariance matrix can be used to physically interpret the pattern of relative deformation for the points. This case study reveals the twisting deformation pattern of the underbody which is the largest mode of the total variation.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Robust Face Recognition Using Local Histogram equalization Under Changing illumination Environment (지역히스토그램을 이용한 조명환경에 강인한 얼굴인식)

  • 장일권;정은성;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.727-729
    • /
    • 2004
  • 최근 정보 보안의 문제를 해결하기 위하여 생체 정보를 이용하여 사용자 인증 및 인식을 하는 기술들이 개발되고 있다 생체 정보를 이용하는 인증 및 인식 기술은 생체 정보를 가지고 사람을 구별하는 기술을 말하며 신뢰성과 편리성에 있어서 기존의 다른 보안 시스템의 한계점을 보완해 줄 것이다. 현재 연구되고 있는 얼굴 인식 기술은 생체인식 중에서 이용자들에게 가장 거부감이 적은 기술이다. 얼굴인식의 장점은 다른 생체인식 기술이 사용자로 하여금 일정한 동작을 취하도록 요구하는 것과 달리 비접촉으로 자연스럽게 확인 할 수 있는 것이며, 사용자는 자신이 현재 검사 당하고 있다는 사실을 인지하지 못하는 상태에서 수행되므로 거부감이 적다.

  • PDF

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

Feasibility Study of Applying the Acrylic Assistant Equipment (ACR) to Reduce Patient's Discomfort in Lower Abdomen MRI Scan (하복부 MRI 검사 시 환자의 불편함을 줄이기 위한 아크릴 보조 장치 사용의 타당성 조사)

  • Park, Eunhye;Lee, Minsik
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.475-480
    • /
    • 2018
  • In lower abdominal MRI scan, patients have been tested by physically contacting with the body array coil. In this study, we have designed the acrylic assistant equipment (ACR) which allows the contactless scan of the patient to the coil and evaluated the feasibility by comparing the acquired images with ACR to those obtained without ACR. We tested 10 cases (F: 5, m: 5) by using the Ingenia $3.0T^{TM}$ MR system and dStreamTM torso coil (Philips Healthcare, Netherlands). We implemented T1 AX TSE and eTHRIVE (GRE) techniques. The scanned images were quantitatively and qualitatively assessed. In qualitatively, the TSE shows 4.44 and 4.56 mean values with and without the ACR and 4.34 and 4.28 at the GRE, respectively. In quantitatively, the TSE shows 12.15 CNR, 17.95 SNR and 12.71 CNR, 18.96 SNR with and without the ACR. And GRE shows 17.72 CNR, 22.59 SNR and 18.26 CNR, 24.47 SNR with and without the ACR, respectively. We have designed and implemented the acrylic assistant equipment to lower abdominal patients. Our data indicate that it is possible to obtain similar image qualities to current lower abdominal MRI scan without the physical contact to the patient.

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature (SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정)

  • Kim, Ki-Bok;Kim, Seong-Hoon;Jeong, Jae-Kee;Shin, Beom-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.