DOI QR코드

DOI QR Code

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature

SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정

  • 김기복 (한국표준과학연구원 안전측정센터) ;
  • 김성훈 (한국표준과학연구원 안전측정센터) ;
  • 정재기 ((주)한빛EDS) ;
  • 신범수 (강원대학교 바이오시스템공학과)
  • Received : 2013.01.05
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.

본 연구는 비접촉 무전원 표면탄성파(surface acoustic wave, SAW) 온도센서를 개발하기 위하여 수행되었다. 단일전극 구조의 IDT(inter-digital transducer)와 434 MHz의 공진주파수를 가지는 SAW 소자를 $128^{\circ}$ rot-X $LiNbO_3$ 압전기판위에 반도체 공정으로 제작하였다. SAW 온도센서의 음향 반사판에 따른 반사 신호의 특성을 분석하기 위하여 다양한 형태의 음향 반사판을 제작하여 표면탄성파 신호의 반사특성을 분석한 결과 빗살형 전극형태의 반사판이 가장 양호한 반사특성을 나타내었다. SAW 온도센서를 구동하기 위한 신호를 송신하고 온도에 따른 SAW 센서의 출력신호를 수신하기 위하여 다이폴 안테나와 마이크로프로세서에 기반한 무선 송수신 시스템을 제작하였다. $40{\sim}80^{\circ}C$의 온도 범위에서 개발된 SAW 온도센서와 무선 송수신 시스템을 평가한 결과 온도증가에 따라 SAW 온도센서의 공진 주파수가 선형적으로 감소하였으며 결정계수가 0.99 이상으로 정확한 무선 온도측정이 가능한 것으로 나타났다.

Keywords

References

  1. R. Rayleigh, "Theory of Sound," Macmillan, New York (1924)
  2. R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied Physics Letters, Vol. 7, No. 12, pp. 314-316 (1965) https://doi.org/10.1063/1.1754276
  3. H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical analysis," Analytical Chemistry, Vol. 51, pp. 1458-1475 (1975)
  4. S. Curtin, B. Jakoby, A. Berthold, V. K. Varadan, V. V. Varadan and M. J. Vellekoop. "A micromachined wet cell for a Love-wave liquid sensor", Smart Electronics and MEMS, San Diego, CA, USA, pp. 194-200 (1988)
  5. I. I. Leonte, G. Sehra, M. Cole, P. Hesketh and J. W. Gardner, "Taste sensors utilizing high-frequency SH-SAW devices," Sensors and Actuators B, Vol. 118, pp. 349-355 (2006) https://doi.org/10.1016/j.snb.2006.04.040
  6. S. Lee, K. B. Kim and D. S. Yee, "Development of surface acoustic wave sensor for viscosity measurement of low viscous liquid using Love wave," Journal of Biosystems and Engineering, Vol. 33, No. 4, pp. 282-287 (2008) https://doi.org/10.5307/JBE.2008.33.4.282
  7. S. Lee, K. B. Kim, Y. I. Kim and J. M. Lee, "Love wave biosensors for detection of antigen-antibody binding and comparison with SPR biosensor," Food Science and Biotechnology, Vol. 20, Vo. 5, pp. 1413-1418 (2011) https://doi.org/10.1007/s10068-011-0194-3
  8. S. Lee, K. B. Kim and Y. I. Kim, "Mass sensitivity calculation of protein layer using Love wave SAW biosensor," Journal of Nanoscience and nanotechnology, Vol. 12, pp. 1-6 (2012) https://doi.org/10.1166/jnn.2012.5111
  9. G. Scholl, F. Schmidt, T. Ostertag, L. Reindl, H. Scherr and U. Wolff, "Wireless passive SAW sensor systems for industrial and domestic applications," In Proc. 1998 IEEE International Frequency Control Symposium, pp. 595-601 (1998)
  10. W. E. Bulst, and G. Fisherauser, "State of the art in wireless sensing with surface acoustic waves," IEEE Tans. on Industrial Electronics, Vol. 48, No. 2, pp. 265-271 (2001) https://doi.org/10.1109/41.915404
  11. K. Hashimoto, "Surface Acoustic Wave Devices in Tele-Communications : Modeling and Simulation," Springer, New York (2000)
  12. R. B. Ward, "Temperature coefficients of SAW delay and velocity for Y-cut and rotated $LiNbO_3$," IEEE Trans. Ultrasin. Ferroelec. Freq. Contr., Vol. 37, pp. 481-483 (1990) https://doi.org/10.1109/58.105256
  13. X. Q. Bao, V. V. Varadan and V. K. Varadan, "SAW temperature sensor and remote reading system," IEEE Ultrasonics Symp., Vol. 2, pp. 583-585 (1987)
  14. X. Q. Bao, V. V. Varadan and V. K. Varadan, "Wireless surface acoustic wave temperature sensor," J. Wave Material Interact., Vol. 9, pp. 19-27 (1994)
  15. W. S. Suh, K. A. Jose, P. B. Xavier, V. V. Varadan, and V. K. Varadan, "Design optimization and experimental verification of wireless IDT based micro temperature sensor," Smart Materials and Structure, Vol. 9, No. 6, pp. 890-897 (2000) https://doi.org/10.1088/0964-1726/9/6/321
  16. D. S. Ballantine and R. M. White, "Acoustic Wave Sensors," Academic Press, Inc., New York (1997)