얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.
본 논문에서는 단일 채널 다성 음악에서 리듬 악기 신호를 블라인드 (blind) 방식으로 추출하는 방법을 제안한다. 상업적으로 판매되는 음악 신호는 대부분 2개 이하만의 혼합된 채널 형태로 사용자에게 제공되는 반면, 그 혼합 채널 신호에는 각각 가창 음원 (vocal)을 비롯한 많은 종류의 악기가 포함되어 있는 형태이다. 따라서, 혼합 신호의 개수가 음원 개수와 같거나 더 많은 상황을 가정하는 기존의 음원 분리 방법처럼, 혼합 환경이나 신호의 통계적 특성을 모델링하는 것 보다는, 특정 음원의 고유 특성을 활용하는 것이 이처럼 적은 개수의 혼합 신호만을 가지고 있는 환경 (underdetermined)에 더욱 적합하다. 본 논문에서는 다른 화성 악기와 혼합되어 있는 상창에서 리듬 악기 음원만을 추출하는 것을 목표로 한다. 비음수 행렬 인수분해 (NMF: Nonnegative Matrix Factorization)의 변형된 알고리즘인 비음수 행렬의 부분적 공동 분해 (NMPCF: Nonnegative Matrix Partial Co-Factorization)가 입력 행렬의 시간적인 속성과 주파수적인 속성에서 다양한 관계성을 분석하기 위해 활용된다. 또한 특정 시간 단위로 입력 신호를 파편화 (segmentation)하고, 파편들에서 반복적으로 발생하는 성분을 리듬 악기가 공통적으로 포함하고 있는 특성이라고 가정한다. 본 논문에서 제안하는 방법은 일반적으로 받아들여질 수 있을 정도의 성능을 보여주지만, 기본적으로는 사전 정보를 활용하는 타악기 음원 분리 방식보다 우수하지는 않다. 그러나 블라인드 방식의 특성상, 사전 정보를 획득한기에 용이하지 않은 경우, 또는 사전 정보와 현격히 다른 리듬 악기가 연주되는 경우 등에 보다 유연하게 대응할 수 있다.
악보 전사란, 오디오 파일로부터 음고 (음표의 높낮이)와 리듬 (음표의 길이) 정보를 추출하여 악보를 만드는 것이다. 본 논문에서는 음원 분리 및 데이터 분류에 자주 사용되는 Non-Negative Matrix Factorization (NMF)와 Non-Negative Sparse Coding (NNSC) 방식을 사용하여 오디오 파일을 주파수와 리듬 성분으로 분류하였다. 또한 배음 통합 (subharmonic summation) 방법으로 분류된 주파수들로부터 기본 진동 주파수를 계산하였고, 이로써 악보를 야루는 음표의 높낮이를 정확히 얻을 수 있었다. 제안한 방식으로 악보 전사거 성공적으로 이루어졌고, NMF 혹은 NNSC만 사용하여 악보 전사를 하였던 기존의 논문들에 비해 향상된 결과를 얻을 수 있었다.
본 논문은 블라인드 소스 분리 분야에서 널리 사용되는 멀티채널 비음수 행렬 분해 기법의 단점을 개선하여 미결정 복잡한 혼합 환경에서 문제를 해결한다. 공간 공분산 행렬에 기반을 둔 기존의 연구들에서, 단일 채널의 파워게인 및 상관관계와 같은 값으로 구성된 행렬의 각 요소는 높은 분산으로 인해 분리된 소스의 품질을 저하시키는 경향이 있다. 이 논문에서는 추정된 소스들을 효과적으로 클러스터링하기 위해 레벨 및 주파수 정규화를 수행한다. 따라서 새로운 공간 공분산 행렬 및 효과적인 클러스터 쌍별 거리함수를 제안한다. 본 논문에서는 제안된 행렬을 공간 모델의 초기화에 활용하여 공간 모델의 향상된 추정과 이를 바탕으로 상향식 접근법에서의 계층적 응집 클러스터링에 활용함으로써 분리된 음원의 품질을 향상시켰다. 제안된 알고리즘은 'Signal Separation Evaluation Campaign 2008 development dataset'을 활용하여 실험을 하였다. 그 결과 객관적인 소스 분리 품질 검증 도구인 'Blind Source Separation Eval toolbox'를 활용하여 대부분의 성능향상지표에서의 향상을 확인하였으며, 특히 대표적인 수치인 SDR의 1 dB ~ 3.5 dB 정도의 성능우위를 검증하였다.
본 연구는 의류의 디자인 간 치수의 불일치와 비표준화로 인해 온라인 구매 시 발생하는 치수 선택의 오류 문제를 해결할 수 있는 방안을 제시하기 위해 수행되었다. 본 논문은 구매자에게 개인화된 치수를 제시할 수 있는 기계 학습 기반 추천 시스템의 구현 방안을 다루고 있다. 온라인 상거래로부터 발생된 구매 데이터를 사용하여 비음수 행렬 분해(NMF), 특이값 행렬 분해(SVD), k-최근접 이웃(KNN), 공동 클러스터링(Co-Clustering) 등 여러 검증된 협업 필터링 알고리즘을 훈련하였고, 이들 간에 성능을 비교하였다. 연구 결과, 비음수 행렬 분해 (NMF) 알고리즘이 다른 알고리즘들보다 뛰어난 성능을 보임을 확인할 수 있었다. 동일한 계정을 사용하는 여러 구매자가 포함되는 구매 데이터의 특성에도 불구하고, 제안 모형은 충분한 정확도를 보였다. 본 연구의 결과는 치수 선택의 오류로 인한 반품률을 감소하고 전자상거래 플랫폼에서의 고객 경험을 향상시키는 데 기여할 것으로 기대된다.
문서군집은 정보검색의 많은 응용분야에 사용되는 중요한 문서 분석 방법이다. 본 논문은 비음수 행렬 분해(NMF, non-negative matrix factorization)를 기반한 용어 가중치 재산정 방법을 이용하여서 사용자의 요구에 적합한 군집결과를 얻도록 하는 새로운 군집모델을 제안한다. 제안된 모델은 군집형태에 대한 사용자 요구와 기계에 의한 군집 형태의 차이를 최소화하기 위하여 사용자 피드백에 의한 가중치가 재계산된 용어를 이용한다. 또한 제안방법은 용어의 가중치 재계산과 문서군집에 문서집합의 내부구조를 나타내는 의미특징행렬과 의미변수행렬 이용하여 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 적용하지 않은 문서군 방법에 비하여 좋은 성능을 보인다.
본 논문은 군집과 위키피디아(Wikipedia)를 이용하여 문서를 군집하는 새로운 방법을 제안한다. 제안된 방법은 비음수행렬분해를 이용하여 군집을 대표할 수 있는 군집 주제(topic)의 개념을 잘 표현할 수 있으며, 위키피디아의 동음이의어를 사용함으로써 문서와 군집 간의 의미관계를 고려하지 않는 용어집합(bag-of-words) 문제를 해결할 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.
본 논문은 위키피디아의 외부지식을 이용하여 사용자의 질의를 확장하고, 확장된 질의와 문서집합의 내부구조를 표현하는 의미특징을 이용하여 문서를 요약하는 새로운 방법을 제안한다. 제안된 방법은 사용자의 초기 질의에 위키피디아 기반의 연관 피드백을 적용하여 사용자가 요구하는 요약문장을 추출할 수 있도록 질의를 확장하며, 비음수 분해된 문서의 의미특징을 이용함으로써 문서의 내부 구조를 잘 표현 할 수 있다. 확장된 질의와 의미특징을 이용하여 의미 있는 문장을 추출함으로써 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 기존방법에 비해서 문서요약에 대해 더 좋은 성능을 보인다.
본 논문에서는 다음향(multisource) 환경에서의 음향 사건 검출 정확도를 높이기 위해 비음수 텐서 분해(nonnegative tensor factorization, NTF)와 은닉 마코프 모델(hidden Markov model, HMM)을 이용한 이중 채널 음향 사건 검출 방법을 제안한다. 제안된 방법은 먼저 이중 채널 입력 신호들에 NTF 기법을 적용하여 얻은 각 음향 사건 별 채널 이득을 활용하여 다수의 음향 사건들을 검출한다. 그러고 나서, 채널 이득에 의해 검출된 음향 사건의 발생 여부를 검증하기 위하여 채널 이득을 우도 가중치로 활용하는 HMM 기반의 우도비 검증을 수행한다. 제안된 방법의 검출 정확도를 평가하기 위하여 다양한 잡음과 사건간 중첩 밀도를 고려하는 다중 사건 발생 환경에 대한 F-measure를 측정하였고, 기존의 혼합 가우시안 모델 및 비음수 행렬 분해 기반의 음향 사건 검출 방법들과 비교하였다. 실험 결과, 제안된 방법이 기존 방법들에 비하여 모든 실험 조건에서 높은 정확도를 보였다.
보행 과정에서 여러 근육이 동시에 수축하는 운동 모듈 또는 근육 시너지는 매우 중요한 중추신경계 운동조절 메커니즘이다. 본 연구는 걷는 동안 근육 간 양성 및 음성 공변 패턴을 이해하는 것을 목표로 한다. 본 연구에서는 트레드밀 보행 시 발생하는 다리 근육 활성을 근전도 검사를 통해 측정하였다. 동시 수축근육 그룹, 즉 운동 모듈을 확인하기 위해 우리는 양쪽 4 개의 다리 근육(전경골근, 내측 비복근, 대퇴직근, 내측 슬괵근)에서 근전도 데이터를 수집하였고, 이를 바탕으로 비음수행렬분해 및 주성분 분석을 수행하였다. 이후 근육 또는 운동 모듈 간의 다양한 조합으로부터 공변이 값을 계산하였고, 이원배치분산분석을 이용하여 각 조합들에서 발생하는 공변이 패턴을 비교하였다. 그 결과, 다양한 조합 사이에 유의미한 공변이 값의 차이가 발견되었다(p < 0.05). 같은 운동 모듈로 정의된 특정 근육 사이에서 발생하는 근 활성은 양성공변이를 보여주었으나 운동 모듈 사이에서는 음성 공변이를 보여주었다. 모든 근육 조합들 사이에서는 음성 공변이가 발생하였다. 운동 모듈 사이에서 안정적으로 발생하는 음성 공변이는 운동 모듈이 복잡한 운동 조정의 제어 단위(control unit) 일 수 있음을 암시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.