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요약

보행 과정에서 여러 근육이 동시에 수축하는 운동 모듈 또는 근육 시너지는 매우 중요한 중추신경계 운동 

조절 메커니즘이다. 본 연구는 걷는 동안 근육 간 양성 및 음성 공변 패턴을 이해하는 것을 목표로 한다. 

본 연구에서는 트레드밀 보행 시 발생하는 다리 근육 활성을 근전도 검사를 통해 측정하였다. 동시 수축 

근육 그룹, 즉 운동 모듈을 확인하기 위해 우리는 양쪽 4 개의 다리 근육(전경골근, 내측 비복근, 대퇴직근, 

내측 슬괵근)에서 근전도 데이터를 수집하였고, 이를 바탕으로 비음수행렬분해 및 주성분 분석을 수행하였

다. 이후 근육 또는 운동 모듈 간의 다양한 조합으로부터 공변이 값을 계산하였고, 이원배치분산분석을 이

용하여 각 조합들에서 발생하는 공변이 패턴을 비교하였다. 그 결과, 다양한 조합 사이에 유의미한 공변이 

값의 차이가 발견되었다(p < 0.05). 같은 운동 모듈로 정의된 특정 근육 사이에서 발생하는 근 활성은 양성 

공변이를 보여주었으나 운동 모듈 사이에서는 음성 공변이를 보여주었다. 모든 근육 조합들 사이에서는 음

성 공변이가 발생하였다. 운동 모듈 사이에서 안정적으로 발생하는 음성 공변이는 운동 모듈이 복잡한 운동 

조정의 제어 단위(control unit) 일 수 있음을 암시하고 있다. 
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Abstract

In human walking, muscle co-contraction which produces simultaneous activities of multiple 
muscles is important in motor control mechanism of the central nervous system. This study aims 
to understand positive and negative covariation mechanism of inter-muscle activities during 
walking. In this study, we measured electromyography (EMG) in leg muscles. To identify motor 
modules, we recored EMG from 4 leg muscles bilaterally (the tibialis anterior, medial 
gastrocnemius, rectus femoris and medial hamstring muscles) and performed non-negative 
matrix factorization (NMF) and principa component analysis (PCA). Then, we computed 
covariation values from various combinations between muscles or motor modules and used 
two-way repeated measures analysis of variance to identify significantly different covariation 
patterns between muscle combinations. As the results, we found significant differences between 
covariation values of muscle combinations (p < 0.05). muscle groups within the same motor 
modules produced the positive covariations. However, there were strong negative covariation 
between motor modules. There was negative covariation in all muscle combination. Stable 
inter-module negative covariation suggests that motor modules may be the control unit in the 
complex motor coordination.
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I. INTRODUCTION

Similar structural constraint of neuro-musculo 

-skeletal system among human beings allows an 

existence of specifically patterned walking strategies 

[1][2]. Meanwhile, because of a number of 

spatiotemporal degree of freedom in the neuro- 

musculo-skeletal system, the synergy between 

individual joints would vary in the process of whole 

body movement by motor abundance[3][4]. That is, 

although the way to move forward in normal gait 

cycle is similar between gait cycles and human 

beings, various motor control strategies might be 

required to maintain balance and upright posture in 

walking[1][2].

To stabilize the whole body kinematics, human 

beings should control a number of each joint 

movement concurrently during walking. In whole 

body coordination, the movements of individual joints 

are variable, but the sum of each joint movement is 

much more stabilized by compensatory synergies[5]. 

Even if one local joint movement is reduced after 

musculoskeletal injury, total joint movement is 

preserved by increased movement of the other joints 

during locomotion[6]. These facts indicate a reverse 

relationship of inter-joint kinematics, namely negative 

compensatory synergy, as one joint movement 

increases by decrease of other joint[6]. 

In the process of inter-joints coordination, 

corresponding muscle activities are positively 

necessary. However, it has been widely accepted that 

muscle co-contraction which produces simultaneous 

activities of both agonist and antagonist muscles 

around same joint is important to increase joint 

stability[7-10]. That is, the synergy in muscular level 

may have positive compensatory synergy pattern as 

one muscle activity increases by increase of other 

muscles[10]. Yet, it is necessary to deliberate 

identifying the positive compensatory synergy 

especially in case of walking because the reciprocal 

inhibition mechanism between the agonist and 

antagonist is surrounded in the same joint[11].

By a linear decomposition technique, the positive 

compensatory synergy of muscle activities, motor 

module, have been shown in human walking[2][12]. 

Because the motor module is composed across 

multi-segmental muscles[1][2][12], the mechanism 

would be different with the agonist and antagonist 

co-contraction[10]. It has been assumed that the 

motor module in body segments may result from 

common neural pathways[13][14]. If the motor module 

reflects constraint source of human motor redundancy 

by neural mechanism[15], the muscle activities within 

each module would produce the positive 

compensatory synergy across multi-segments to 

simplify movement production. Moreover, because 

muscle compositions within the motor module are 

fixed[16], the muscular covariation patterns would be 

stable during a number of gait cycles. As some 

investigators have asserted that the muscle groups 

are flexibly consisted in various muscle combinations 

during functional postures or movements and not to 

work together[17][18]. Thus, it also should be 

identified whether the positive compensatory synergy 

is produced between fixed muscles comprising the 

motor module. 

The purpose of the study was to understand 

covariation mechanism of inter-muscle activities 

during walking. To identify the mechanism, first, the 

positive or negative covariation values were 

demonstrated from inter-muscle activities using 

electromyography (EMG) during consecutive walking. 

According to the motor module concept, we 

hypothesized that the muscle activities would show 

the positive covariation within each module, but not in 

between-module combinations. In case of agonist- 
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antagonist pairs, we expected that the positive 

covariation would be blocked by reciprocal inhibition. 

If no significant positive covariation would be 

identified in the study, it means that the combination 

of the muscle groups within the module is not clear. 

More specifically, we also considered the possibility 

of positive covariation with reverse relationship 

between elements[Fig. 1]. In this case, the elements 

are worked simultaneously with the same shape in 

the work space, but the signals were formed with 

reverse shape from its mean value. Hence, we 

identified existence of this pattern in process of 

forming the reverse synergy in mean-corrected space.

Fig. 1. Examples of covariation patterns

Black line indicates mean value between the 

elements. A) positive covariation, B) negative 

covariation, C) positive covariation in work space & 

high variance in mean-corrected space, D) positive 

covariation in work space & low variance in 

mean-corrected space.

Ⅱ. METHODS

2.1 Participants

Participants in this study included sixteen healthy 

adults (8 females and 8 males; age, 25.3 ± 5.4 yr; body 

mass, 76.1 ± 14.1 kg; height, 170.2 ± 11.5 cm; 

dominant side, right). Participants were included if 

they had no medical history regarding 

musculoskeletal or neurological disease. Exclusion 

criteria were : (1) acute musculoskeletal injury, (2) 

neurological history, (3) problems in ambulation, (4) 

pregnancy, and (5) amputation. All participants had 

the experience to walk without any supports in a 

treadmill. Study procedures were approved by the 

institutional review board of Cheongju University 

(HR-013-01). 

2.2 Procedures

Surface EMG (BTS FREEEMG, Milan, Italy) was 

measured during walking. Electrodes were placed on 

the tibialis anterior, medial gastrocnemius, rectus 

femoris and medial hamstring (semitendinosus) 

muscles bilaterally. These muscles were selected due 

to their apparent and robust activities during walking 

in a previous study[12].

Inter-electrode distance was 20 mm. Before 

attaching the electrode, the skin areas were cleaned 

with alcohol. Sampling rate of EMG was 1000 Hz. To 

confirm EMG activities, visual inspection was 

conducted during voluntary submaximal movements 

for each muscle in standing position. To avoid EMG 

noise generated by motion artifacts, all EMG signals 

were pre-amplified and the hardware low pass filter 

was fixed at 450 Hz. EMG data were processed using 

a third-order high-pass Butterworth filter at 30 Hz, 

full-wave rectification, a third-order low-pass 

Butterworth filter at 5 Hz. A synchronized triaxial 

accelerometer was used to decide individual gait 

cycles and placed over the shank to identify heel 

strike event of right leg side. Participants walked on 

a treadmill (STEX8100T, TaeHa, Korea). They were 
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given 1–2 min to familiarize themselves. After the 

familiarization with the device and pace, participants 

walked at 3 km/h with no inclination for 3 min while 

data were recorded[1]. 

2.3 Motor module extraction

EMG data were extracted for consecutive 99 gait 

cycles. Since the aim of this study was to identify 

relationship between the elements, for spatial 

normalization across participants, all data were 

subtracted by each minimum value and then divided 

by maximum value. After the spatial normalization, 

all of the EMG data were ranged from 0 to 1. In case 

of inter-module combination, the elements were 

configured as the sum of agonist muscle activities 

composing each module. Thus, spatial normalization 

was conducted again after finding the motor module. 

All signals were time-normalized to 9900 data points 

indicating 100 points × 99 gait cycles.

To identify the motor module in EMG activities, we 

conducted non-negative matrix factorization[19]. Usin

g this linear decomposition technique, we extracted th

e motor modules from original EMG data (EMGo) as 

follows: where n is the number of modules, i is indivi

dual modules, C is a muscle (m) × i matrix that prese

nt muscle weighting indicating the contribution level 

of individual muscles per each motor module, W is a 

i × time (t) matrix that module activation profile, and 

e is residual error. EMGr is reconstructed EMG that 

is an m × t matrix resulting from the multiplication 

of W and C. Since low difference between EMGo and 

EMGr increase the validity of the synergy module, to 

reduce the residual error, the number of times to repe

at the factorization using random initialization for W 

and H was set at 1500 times of repetitions with 200 

times of maximum iteration, and then the result with 

the lowest residual error was selected. In this study, 

the number of module was fixed at four by evidence 

that the motor module in walking is four[20]. To ident

ify the validity of the four modules, we calculated the 

variability accounted for (VAF) as follows: Theoretic

ally, more complex and various patterns in EMGo res

ults in decreased VAF and increased minimum modul

e number than simple pattern. 

Because principle component analysis (PCA) was 

conducted in the previous study asserting flexible 

module[18], we also performed PCA using the same 

dataset with NMF. In both techniques, the modules 

were deemed the acceptable quality of reconstruction 

when similarity between original and reconstruction 

data was higher than 90%. After the analysis of EMG 

decomposition, to select the agonist muscles of each 

muscle weighting, one-way analysis of variance 

(ANOVA) and Dunncan’s post hoc analysis was 

conducted. If significantly difference was identified 

within the muscle weighing, we chose the muscles 

having significant high coefficient value and defined it 

as the agonist of module.

2.4 Data analysis

In the current study, we analyzed covariation 

between element in both actual and mean-corrected 

spaces[Fig. 1]. The actual space emphasized 

covariation of muscle activity related to actual work 

amount. All measured dataset were divided into each 

cycle to identify whether covariation values changed 

between gait cycles. The combinations of elements to 

compute inter-covariation were listed in [Table 1]. To 

identify covariation in the actual space, the analysis 

was modified from previous study[21]. First, time 

profiles of individual elements [Ei(t)] and of the sum 

of the individual elements [Etot(t) = Ei(t)] were 

arranged per each gait cycle. Then, the variance of 

Ei(t) and Etot(t) were calculated per each gait cycle 

[VarEi(c) and VarEtot(c) respectively]. Further, the 

sum of the variances of individual elements [VarEi(c)] 
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was calculated. Then, the ratio between the two 

variance values [Var_ratio(c) = VarEtot(c) / 

∑VarEi(c)] were divided by the number of elements 

as a convariation index [Cov_i(c) = Var_ratio(c) / n]. 

Since covariation values were ranged from 0 to 1 in 

the results, we subtracted 0.5 from Cov_i(c) value, 

which indicates the predominance of positive or 

negative covariation based on zero. In case of 

Cov_i(c) > 0, positive covariations dominate leading 

to the positive compensatory synergy between 

elements. In Cov_ind(c) < 0, it means that negative 

covariations dominate leading to the negative 

compensatory synergy between the individual 

elements. By this calculation, maximum negative and 

positive covariation values were ranged from -0.5 to 

0.5.

Table 1. The combinations of elements to compute 

inter-covariation

Combination index 
(n = 17)

Element description

All muscles All muscle combination

Within-module 
(Module 1, 2, 3, and 4)

The agonist muscles within 
each motor module 1, 2, 3, 

and 4

Agonist-antagonist (TA-MG 
& RF-MH, each side)

Muscle pair activated toward 
reverse direction in the same 

joint

Inter-module 
Sum of agonist muscles 
composing each module 

The elements were projected mean-corrected space 

to demonstrate the relationship between the elements 

in process of inter-muscle activation. This analysis 

was especially focused whether the positive 

covariation was formed with reverse relationship 

between elements. First, each element in 

combinations was subtracted from its mean values. 

Thus, the relationship between the elements has the 

reverse pattern each other. At this space, the 

combinations having strong reverse relationship 

produce relatively high variance while weak reverse 

relationship results in low variance. Hence, we 

calculated the mean of the variances in each 

combination and compared each other. All results 

were expressed as relatively high or low variance.

All data were described as mean ± standard 

deviation (SD). To identify significant differences in 

the covariation and mean variance values between the 

combination indexes, two-way repeated measures 

ANOVA (10 combination indexes × 99 cycles) and 

Dunncan’s post hoc were conducted. Specifically, to 

identify changes of measured values between the gait 

cycles per each combination, one-way repeated 

measures ANOVA was performed additionally. 

Shapiro-Wilk test examined normal distribution of 

participants’ anthropocentric characteristics such as 

age, weight, and height. Significance for all tests was 

set at α = 0.05. The statistical analysis was conducted 

using SPSS 19.0 (IBM SPSS Statistics, Chicago, IL, 

USA).

Ⅲ. RESULTS

Shapiro-Wilk test indicated that anthropocentric 

characteristics of our participants such as age, 

weight, and height were normal distribution (p > 

0.05).

 

3.1 Motor module for walking

In NMF, all participants showed 4 modules and 

VAF was 92% ± 1 in the study. The four modules in 

normal controls were arranged in time order within 

the gait cycle. 

The right RF and TA were agonist muscles in 

Module 1. This module was activated with major and 

minor peak phases. The one-way ANOVA and post 

hoc analysis showed that RF and TA in the right side 

significantly contributed to produce the module 1 

compared to other muscles. The weighting 
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Fig. 2. Muscle weighting values of motor module 1, 2, 

3, and 4  

coefficients of the right RF and TA were 0.60 ± 0.18 

and 0.67 ± 0.16 in the module 1. In module activation 

profile, the module 1 was activated with major and 

minor peak phases. The major activation of the 

module 1 occurred during loading response (-10 ~ 

20% of gait cycle) and the minor one was generated 

during initial swing (60 ~ 80% of gait cycle) in the 

right leg.

Fig. 3. Comparisons of covariation values

The right MG and left MH were agonist muscles in 

Module 2. This module mainly consisted of MG in the 

right side and MH in the left side. The weighting 

coefficients of these muscles were 0.69 ± 0.08 and 

0.57 ± 0.18, respectively. Module 2 was activated with 

one phase. The activation of the module 1 occurred 

when the right leg was terminal stance (10 ~ 60% of 

gait cycle) and the left leg was terminal swing.

The left RF and TA were agonist muscles in 

Module 3. This module showed symmetrically 

reversed patterns compared to the module 1. The 

module 3 mainly consisted of RF and TA in the left 

side. The weighting coefficients of the left RF and 

TA were 0.73 ± 0.12 and 0.51 ± 0.13, respectively. In 

module activation profile, the major activation 

occurred during loading response (40 ~ 70% of gait 

cycle) and the minor one was during initial swing (10 

~ 30% of gait cycle) in the left leg.

The left MG and right MH were agonist muscles in 

Module 4. This module showed symmetrically 

reversed patterns compared to the module 2. The 

module 4 mainly consisted of MG in the left side and 

MH in the right sides. The weighting coefficients of 

these muscles were 0.68 ± 0.09 and 0.56 ± 0.16, 

respectively. In module activation profile, the 

activation occurred when the right leg was terminal 

swing (60 ~ 110% of gait cycle) and the left leg was 

terminal stance.

In PCA, eight participants showed 3 modules and 

one participant was 4 modules. For the eight 

participants, we conducted the one-way ANOVA to 

find agonist muscles in each module, but there were 

no significant different weighting coefficients in PCA 

module (p > 0.05).

3.2 Comparisons in work space

The two-way ANOVA showed significant 

differences between combination indexes and 
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Dunncan’s post hoc presented seven subgroups that is 

significant different each other[Fig. 3]. All muscles 

combinations commonly showed the lowest 

covariations than other individual combinations (p < 

0.05). 

Fig. 4. Mean variance of each combination in 

mean-corrected space

Positive covariations were showed in the muscle 

pairs composing the motor module. Among the 

within-module combinations, the module 2 and 4 

showed more positive covariations than module 1 and 

3 (p < 0.05). When the agonist-antagonist muscles 

were combined, we found the positive covariation at 

RF-MH pairs, but the covariation level was low. 

Although TA-MG pair is also categorized into the 

agonist-antagonist co-contraction element, it showed 

negative covariation with significant difference in 

other combinations (p < 0.05). The combination of 

inter-module and all-muscles presented the highest 

negative covariation in EMG data (p < 0.05), and the 

two combinations were not significantly different. 

3.3 Comparison in mean-corrected space

The results were especially focused in the 

combination having the positive covariation in the 

work space. Hence, we specifically observed whether 

the rank among the combinations was change 

between the work and mean-corrected spaces, 

especially in within-module, RF-MH pairs, and cross 

(D-Knee-N-Ankle, N-Knee-D-Ankle) combinations. 

The statistical analysis of the variance in the 

mean-corrected space showed similar results with the 

work space[Fig. 4]. The rank of variance values was 

approximately equal to the work space. Thus, our 

results indicated that there is no positive covariation 

accompanying the strong reverse relationship 

between the elements. All muscles and inter-module 

combinations had higher variance than individual 

combinations (p < 0.05). All within-module 

combinations showed weak reverse relationship 

among the all variables (p < 0.05).

Fig. 5. Time profile of covariation values in work space 

(A) and mean-corrected space (B)

3.4 Time profiles of compensatory synergies

In covariation of EMG variables, the positive and 

negative compensatory synergies were continuously 
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maintained[Fig. 5A]. All covariation values were 

stable without incline or decline during the task (p > 

0.05). High deviations were relatively presented in the 

within-module and the agonist-antagonist 

combinations, but the deviations were reduced in 

inter-module and all muscles combinations. Time 

profiles more clearly showed that RF-MH 

combination was placed in weak covariation 

relationship. In case of mean-corrected space[Fig. 

5B], the mean variance of combinations also showed 

stable values per each gait cycle (p > 0.05). 

IV. DISCUSSION

This study aimed to identify whether a muscle 

group composing motor module generate positive 

covariation during walking. As the results, EMG 

elements showed that the within-module 

combinations produced the positive covariation, but 

inter-module combination had negative covariation. 

The agonist-antagonist muscle pair did not belong to 

the within-module combination and showed weak 

positive or negative covariation compared to other 

combinations. In current study, we could not observe 

remarkable reverse relationship of the positive 

covariation identified in mean-corrected space.

As shown in the positive covariation of the 

within-module combination, specific muscles 

composing the motor module produced similar 

temporospatial activities to accomplish task purpose. 

Less reverse relationship of within-module 

combination in the mean-corrected space supports 

that they would be activated together with less 

inter-communication under hierarchical neural 

system. Although the agonist-antagonist 

co-activation of proximal segments showed positive 

covariation, reciprocal inhibition of interneurons 

seems to block this covariation pattern. Thus, we 

presume that the neural mechanism of the 

co-activation of within-module combination would be 

different to the agonist-antagonist combinations. 

Considering that corticospinal axons are connected 

over several spinal segments with terminal 

arbors[22], in process of descending motor command, 

cortical signals would be spread out to several spinal 

motor neuron pools activating multiple-muscles. This 

divergent properties were also demonstrated by 

intra-axonal staining, serial-section, and three- 

dimensional reconstruction of their axonal 

trajectories[23]. This study provides evidence that 

single cortical motor neurons innervate a functional 

set of multiple muscles. The multi-connection in 

neural system implicates the neural implementation of 

the motor module to reduce redundant control system. 

Hence, there is high probability that human central 

nervous system habitually uses a combination of 

muscle elements generating muscle forces across 

several joints during walking.

In contrast to the within-module combination, the 

inter-module had obvious negative covariation. 

Moreover, the deviation of covariation values was 

quite low in the inter-module. That is, the positive 

covariations of the within-modules would construct 

stable negative covariation of the inter-module. 

Moreover, the inter-module showed stable negative 

covariation. Thus, as the sum of each joint movement 

is much more stable than the individual joint by 

compensatory synergies[5], each motor module may 

correspond to individual joint having strong negative 

compensatory synergy for motor-equivalent 

covariation[24]. If so, motor module would be a basic 

control unit in muscular system. 

To identify the motor modules, we conducted two 

decomposition techniques, NMF and PCA. The 

decomposition technique has great advance to 
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simplify large and complicate EMG data measured in 

various muscles under high sampling rate. In addition, 

since the results of simplified EMG data are 

quantitated based on the muscle weighing and the 

module activation profile, these results would be more 

utilizable to understand human movement mechanism 

than an intuitive interpretation of individual EMG 

data. 

The notion of EMG decomposition has been 

disagreed according to whether the muscle weighing 

is fixed or varied[16]. Interestingly, in process of 

EMG decomposition, PCA was used in the studies 

asserting the varied muscle weighting corresponding 

to m-modes[17][18], while NMF was in the fixed 

muscle weighting as the muscle synergy[16][25]. In 

current study, we used the decomposition techniques 

only to identify the motor modules in bilateral low 

extremity muscles during walking because the 

intervention of decomposition process might disturb 

presenting underlying nature of motor output 

coordination. Furthermore, we used both 

decomposition techniques to choose the agonist 

muscles of the module because different results could 

arise by different technique[26]. Then, the covariation 

values of muscle activities were calculated using 

original dataset. As the result, we failed to choose the 

agonist muscles of the module in PCA because there 

was no significant high value in muscle weighting 

coefficients extracted from PCA. These results might 

support the notion of M-mode asserting the varied 

muscle weighting. If muscle weighting coefficients 

were varied per each gait cycle, the covariation values 

of each EMG combination would be various between 

the gait cycles. However, no significant difference 

between the gait cycles would support the notion of 

the fixed muscle weighting. Hence, we chose the 

muscle pairs within-module based on NMF results 

and focused variability of covariation values. As 

shown in [Fig. 5], the covariation in the inter-module 

combination present very stable values during whole 

gait cycles. In addition, the all combination indexes 

resulted in no significant difference between each gait 

cycles. It means that human walking has fixed muscle 

weighting that maintains relationship of each muscle 

pair without various pattern changes. Thus, this 

study more supports the results of NMF than those 

of PCA. 

The different results of PCA might be caused by 

the characteristics of the technique. Considering that 

PCA results in negative number even though muscles 

generate no negative activities, non-negative 

technique would be more reliable than orthogonal 

methods like PCA in composition of inherently 

positive quantified variables[26][27]. In practice, the 

agonist muscles of each module extracted from NMF 

were biomechanically interpretable well. However, the 

result on PCA had to confront explaining why 

irregular muscle weighting patterns containing 

negative values are produced in walk steady treadmill 

walking. These facts indicate that usage of PCA in 

EMG data seems to be open to doubt in terms of 

biomechanical interpretation of the results. 

In conclusion, it has been believed that human brain 

concentrates particular variables related to task 

performance. To conduct desired task, multi-segment 

coordination are accompanied with multi-muscle 

activations innervated by the central nervous system. 

To identify complex motor output patterns, we 

identified covariation patterns of muscular elements. 

As the results, we found that specific muscle groups 

composing the within-modules produce the positive 

covariations. Further, less interaction within the 

muscle group was identified in mean-corrected space 

in contrast to between the groups. Hence, we 

presume that muscular elements have unique 

physiological characteristic that forms the control unit 
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within the elements. Stable negative covariation of 

the inter-module also suggests that the motor 

modules may be the control unit in the complex motor 

coordination. We expect that covariation mechanism 

during walking would be contributable to data science 

and digital health care[27][28].
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