• Title/Summary/Keyword: 비용최적설계

Search Result 578, Processing Time 0.024 seconds

Estimating optimal flood of the hydroelectric dams on the Bukhangang River (북한강 수계 수력발전댐의 최적설계홍수량 추정)

  • Kim, Sang Ug;Choi, Kwang Bae;Seo, Dong Il;Cheon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.286-286
    • /
    • 2022
  • 홍수피해를 최소화하기 위한 수공구조물의 적정 규모 결정을 위해 사용되는 홍수빈도분석에는 통계적 분석절차에 따른 불확실성이 포함된다. 따라서 불확실성이 포함된 범주 내에서 가장 적절한 설계홍수량(design flood)를 결정하는 과정은 수공구조물의 최종단계에서 중요하게 다루어져야 하는 부분이나 이를 제시한 연구는 많지 않다. 비용-편익 분석기법을 홍수빈도분석 절차에 도입하여 구성되는 총 기대비용함수(total expected cost function)는 설계홍수량 중 최적 설계홍수량(optimal design flood)를 결정하기 위한 새로운 접근방식이다. 이 절차는 UNCODE(UNcertainty COmpliant DEsign)로 명명되어 사용된 바 있으나, 국내에서는 아직 적용 결과가 소개되지 않고 있다. 따라서 본 연구에서는 UNCODE의 수학적 구성 절차를 소개함과 함께 북한강수계에 위치한 수력발전댐(화천댐, 춘천댐, 의암댐, 청평댐)의 년최대유입량을 사용하여 최적 설계홍수량을 산정하고 이 결과를 기존 홍수빈도분석 결과와 비교하였다. 불확실성이 고려된 총 기대비용함수로부터 확률분포함수들(Gumbel 및 GEV)의 모수를 추출하는 과정에서 Metropolis-Hastings 알고리즘을 사용하여 불확실성의 범위를 추정하였으며, 비용-편익 분석기법에 사용되는 비용 및 피해함수는 수학적 구성의 편의성을 위하여 1차 선형함수로 가정되었다. 4개의 발전용댐, 2개의 확률분포 및 2개의 재현기간에 대하여 최적 설계홍수량의 중앙값이 기존 홍수빈도분석 절차에 의해 산정된 설계홍수량보다 일정 정도 큰 값으로 산정됨을 알 수 있었다. 향후에는 본 연구에서 적용된 절차를 간단한 수식형태로 함수화하여 발전용댐 운영의 실무업무나 하천기본계획의 수립 등에 있어 비용-편익분석 기법의 적용성을 높이기 위한 연구가 진행될 필요가 있을 것으로 판단된다.

  • PDF

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Improvement of Hybrid Vision Correction Algorithm for Water Resources Engineering Problem (수자원공학 문제 적용을 위한 Hybrid Vision Correction Algorithm의 개량)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.196-196
    • /
    • 2021
  • 상수관망은 많은 관을 통해 물의 수요가 있는 곳으로 물을 공급해주는 역할을 하는 사회기반 시설물이다. 상수관망 설계의 요점은 두 가지로 구분할 수 있다. 첫 번째 요점은 다양한 종류의 관배치로 인한 상수관망 설계안의 많은 경우의 수이다. 두 번째 요점은 상수관망 내 절점의 최저 요구수압 등의 제약조건이다. 두 가지 요점이 있는 상황에서 상수관망 설계비용의 최소화를 위한 상수관망 최적설계는 많은 계산이 요구된다. 많은 계산이 요구되기 때문에 상수관망 최적설계에 최적화 기법을 적용할 수 있다. 본 연구에서 상수관망 최적설계를 위해 적용된 최적화 기법은 Hybrid Rate(HR)를 개선한 Hybrid Vision Correction Algorithm(HVCA)이다. HVCA는 Vision Correction Algorithm(VCA)을 기반으로 추가적인 전역탐색을 실행하는 Centralized Global Search(CGS)의 적용 및 자가적응형 매개변수인 Hybrid Rate(HR)를 적용하여 사용성과 성능을 개량한 알고리즘이다. HVCA의 기존 HR은 선형적으로 증가하는 형태이다. 선형적으로 증가하는 HR로 인해 HVCA는 최적해 탐색과정에서 지역해에 빠지는 문제가 발생하였다. HVCA의 문제를 해결하기 위해 HR을 비선형적으로 증가하는 형태로 개량하였다. HR이 개량된 HVCA를 수자원공학 문제인 상수관망 최적설계 문제에 적용하여 결과를 비교하였다. 적용결과 HR이 개량된 HVCA가 기존의 HVCA보다 낮은 설계 비용을 나타내었다. 상수관망 최적설계 적용결과를 바탕으로 HR이 개량된 HVCA는 상수관망 최적설계 이외의 수자원공학 문제에도 적용가능할 것이다.

  • PDF

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.

A Study on Cost-Effectiveness Evaluation and Optimal Design of ant dampers for Cable-Stayed Bridges (사장교에 장착된 MR 댐퍼의 비용효율성 평가 및 최적설계 연구)

  • Park, Won-Suk;Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.47-56
    • /
    • 2006
  • A method is presented for evaluating the economic efficiency of a semi-active magneto-rheological (MR) damper system for cable-stayed bridges under earthquake loadings. An optimal MR damper capacity maximizing the cost-effectiveness is estimated for various seismic characteristics of ground motion. The economic efficiency of MR damper system is addressed by introducing the life-cycle cost concept. To evaluate the expected damage cost, the probability of failure is estimated. The cost-effectiveness index is defined as the ratio of the sums of the expected damage costs and each device cost between a bridge structure with the MR damper system and a bridge structure with elastic bearings. In the evaluation of cost-effectiveness, the scale of damage cost is adopted as parametric variables. The results of the evaluation show that the MR damper system can be a cost-effective design alternative. The optical capacity of MR damper is increased as the seismic hazard becomes severe.

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

An Optimal Design of Paddy Irrigation Water Distribution System (논관개용 관수로시스템의 최적설계)

  • 안태진;박정응
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.161-171
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operation constraints. The design of new branching network in a paddy irrigation system is presented here. The program based on the linear programming formulation is aimed at finding the optimal economical combination of two main factors: the capital cost of pipe network and the energy cost. Two loading conditions and booster pumps for design of pipe network are considered to obtain the least cost design.

  • PDF

Optimum Structural Design of Stiffened Cylinders Based on Reliability Analysis (신뢰성 해석에 기초한 보강된 실린더 부재의 최적구조설계)

  • Joo-Sung,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.67-71
    • /
    • 1990
  • This study is concerned with the optimum design of stiffened cylindrical members frequently found in floating offshore platforms with constraints on reliability. Minimised is the expected total cost which is composed of the structural cost and the expected failure cost. Some design requirements drawn from variotus design codes are also considered as constraints. Reliability of critical component in a structure only is considered in this paper and the system failure is discarded since the probability of system failure is in general much smaller than the probability of component failure and it is very difficult to evaluate the cost due to system failure. Ultimate strength only is considered and not the fatigue strength. Several parametric studies are illustrated and the optimum solutions for different strength models which are now in use for the design of stiffened cylinders are derived to show the optimum designs against different strength models for the same type of structural component. The present results lead to the important conclusions relating to the posibility of more cost saving in the design of such structure through the reliability-based optimisation process.

  • PDF