• Title/Summary/Keyword: 비소성 실트

Search Result 12, Processing Time 0.03 seconds

Prediction for Liquefaction and Lateral Flow on Non-plastic Silt (비소성실트지반의 액상화 및 측방유동량 예측)

  • Yang, Taeseon;Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.65-70
    • /
    • 2011
  • It is well known all much information for evaluation on possibility of liquefaction and lateral flow for sand over the world. Recently, it is started to be known that liquefaction happens on non-plastic silt, too. But cyclic and post-cyclic characteristics for non-plastic silt is a few familiar to the world. Specially, it is not aware of the estimating method for lateral flow on non-plastic silt. The main purpose in this paper is to propose the evaluation for liquefaction and lateral flow on non-plastic silt. The method used in this research is that possibility for liquefaction on non-plastic silt was evaluated with cyclic direct simple shear test, and then residental strength was estimated with static shear test. Through the test results liquefaction on non-plastic silt is well not happened but strength decreases rapidly with increasing shear stress. With the proposed method it can be evaluated possibility of liquefaction and propose lateral flow.

Stiffness Comparison of Non-plastic Silt due to Bender Element and Direct Simple Shear Test (벤더엘레먼트와 단순전단시험에 의한 비소성실트의 강성 비교)

  • Song, Byungwoong;Yasuhara, Kazuya;Sakamoto, Wataru;Lee, Jeawoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Recent investigations into earthquake-induced damage have reported that liquefaction may take place on not only sands but also fine-contained soils or non-plastic silts. Although not a few study has been performed to understand the liquefaction of sands, relatively little effort has been devoted to improving our understanding of the liquefaction characteristics for non-plastic soils. Given that liquefaction strength is largely associated to shear wave velocity, bender element test as well as direct simple shear test is employed to examine the stiffness of non-plastic silt more precisely. Through the soil tests, the stiffness of non-plastic silts from the bender element tests is identified as slightly greater than that from the direct simple shear test. Further, the stiffness of non-plastic silts appears to be smaller than that of clay.

  • PDF

Nonlinear Compression Characteristics of Highly Plastic Clays and Silts of Korea South Coast (한국 남부 해안 고소성 점토 및 실트의 비선형 압축특성 연구)

  • Hong, Seok-Woo;Im, Jong-Chul
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Highly plastic clays in their normally consolidated states are not always linear but are concave downwards. Thus their compression index deceases with the increase of consolidation pressure. The $e-{\log}{\sigma}_{\upsilon}{\prime}$ curves of plastic or non-plastic silty clays are not linear but are convex upwards. In this paper, consolidation tests were conducted with several undisturbed field soils of Korea south coast and their $e-{\log}{\sigma}_{\upsilon}{\prime}$ plots are not always linear. In case of using Butterfield's method(liquid limit 50~100%), ${\ln}{\upsilon}-{\ln}{\sigma}_{\upsilon}{\prime}$ plots are linear. But some undisturbed samples which have void ratio over 2.24, liquid limit over 100% and plasticity index over 60% are not linear. In results of consolidation tests with remolded samples which contain silt(fly ash) contents of 90% has compression index increasing with the increase in consolidation pressure.

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

Assessment of Liquefaction Potential on Non-Plastic Silty Soil Layers Using Geographic Information System(GIS) and Standard Penetration Test Results (지리정보시스템 및 표준관입시험 결과를 이용한 비소성 실트질 지반의 액상화 평가)

  • Yoo, Si-Dong;Kim, Hong-Taek;Song, Byung-Woong;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.5-14
    • /
    • 2005
  • In the present study, the liquefaction potential in the area of the Incheon international airport was assessed by applying the data of both standard penetration tests and laboratory tests to the modified Seed & Idriss method. The analysis was performed against the non-plastic silty soil layer and silty sand soil layer existing within the depth of 20m and under the ground water level, having the standard penetration value(N) of below 20. Also, each set of data was mapped using the GIS(Geographic Information System) and the safety factor against the liquefaction potential ($FS_{liquefaction}$) was obtained by overlapping those layers. Throughout the analysis, it was found that there exists a potential hazard zone for the liquefaction, showing partially that the safety factor against the liquefaction potential is 1.0 to 1.5 below the standard safety factor criterion. It is further thought to be necessary that the liquefaction potential for the corresponding hazard zone be additionally assessed in detail.

  • PDF

Characteristics of Dynamic Compaction Energy for a Non-plastic Dredged Soil (비소성 준설토의 동다짐 에너지 특성 연구)

  • Hwang, Seong Chun;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.110-117
    • /
    • 2011
  • Seashore landfill projects use undersea pump dredging method for construction of airport and factory site. Coarse grain soil from the dredging is considered for use at inland. West sea shore bottom consists of primarily coarser grained silt-sand and this component contains far more percentage than is the case with East sea and South sea area. This soil shows very different characteristic at consolidation and compaction behavior. This research targets to utilize this type of dredging soil. Test specimen is from West sea (Saemangum) dredged soil landfill site. Model analysis is done for getting prediction of original soil relative density and N-value from dynamic compaction energy variance. Dynamic compaction energy is calculated for efficient foundation design.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

Cyclic Shear Characteristics of Nakdong River Sand Containing Fines with Varying Plasticity (낙동강 모래에 포함된 세립분의 소성지수에 따른 반복전단 특성)

  • Park, Sung-Sik;Kim, Young-Su;Kim, Sung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3C
    • /
    • pp.93-102
    • /
    • 2011
  • Most experimental studies on soil liquefaction are related to clean sands. However, soils in the field or reclaimed grounds commonly contain some amounts of silt and clay rather than clean sand only. Many researchers investigated the effect of fine contents on liquefaction resistance and mainly used non-plastic fines such as silts. In this study, 10% of plastic fines with various plasticity index (PI) such as 8, 18, 50, and 377 were mixed with wet Nakdong River sand and then loose, medium, and dense specimens were prepared by undercompaction method. A series of undrained cyclic triaxial tests were carried out by applying three different cyclic stress ratios. As a result, the liquefaction resistance tended to decrease as a PI of fines in the specimens with equal fine content increased. On the other hand, the difference between loose specimens with low and high plasticity fines was not clearly observed in terms of liquefaction resistance. However, in the case of dense specimens, liquefaction resistance decreased up to 40% as a plasticity of fines increased.

Influences of Confining Pressure and Fines Content on Compressibility Characteristics of Sand (압력수준과 세립분함유량에 따른 모래의 압축특성)

  • Kim, Uk-Gie;Zhuang, Li;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.97-106
    • /
    • 2012
  • In order to investigate mechanics of mixtures composed of sand and non-plastic silt, various specimens, with sand dominating the soil structure, and with varying fines content, fines content varying were produced. Isotropic consolidation tests were performed using high pressure triaxial test apparatus within high pressure levels where sand grain crushing happened. Experimental results showed that compressive curve of sand after yielding contracts to the NCL due to breakage of sand grains. Moreover, with the increase of fines content, coarse grains are surrounded by fines to form cushion effect, which made the breakage of coarse grains become difficult. Therefore, the maximum inclination of compressive curve became flatter and yield stress increased.

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.