• Title/Summary/Keyword: 비선형 토크

Search Result 94, Processing Time 0.021 seconds

Basic Experiment of P8250 Educational Engine Performance (P8250 학습용 엔진성능의 기초 실험)

  • Lim, Chang-Su;Choi, Jun-Seop;Wang, So-Rang
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.218-231
    • /
    • 2008
  • The purpose of this study was made for the pre-teacher of university to enhance understanding for the concept of engine performance and to provide information regarding engine performance in the institute of teacher educator. This study was carried out through engine performance experiment with The Cussons Engine Test Bed P8250, internal combustion engine, in order to analyze data quantitatively, and apply and verify factors of controlling engine performance. The main results of this study are as follows: First, power and brake horsepower increased linearly, and torque over the mid-speed as engine rps(revolution per second) decreased. Second, the change of torque and specific fuel consumption were able to be verified and the concept of engine performance was able to be understood. Third, the experimental values of brake horsepower and torque on engine performance showed the same tendency as theoretical values. Fourth, air/fuel ratio increased proportionally as engine speed increased.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

A Study on Adhesive Joints for Composite Driveshafts (복합재료 동력전달축의 접착조인트에 관한 연구)

  • 김진국;이대길;최진경;김일영
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece driveshafts composed of carbon/epoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesive joint was used to join the composite shaft and the aluminum yoke. The torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element analysis and compared with the experimental result. Torque transmission capability was based on the Tsai-Wu failure index fur composite shaft and the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and the finite element analyses, it was found that the static torque transmission capability of the composite driveshaft was highest at the critical yoke thickness, and saturated beyond the critical length. Also, it was found that the one-piece composite driveshaft had 40% weight saving effect compared with a conventional two-piece steel driveshaft.

  • PDF

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

A Torque Estimation and Switching Angle Control of SRM using Neural Network (신경회로망을 이용한 SRM의 토크 추정과 스위칭 각 제어)

  • 백원식;김민회;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.509-516
    • /
    • 2002
  • This paper presents a simple torque estimation method and switching angle control of Switched Reluctance Motor(SRM) using Neural Network(NN). SRM has gaining much interest as industrial applications due to the simple structure and high efficiency. Adaptive switching angle control is essential for the optimal driving of SRM because of the driving characteristic varies with the load and speed. The proper switching angle which can increase the efficiency was investigated in this paper. NN was adapted to regulate the switching angle and nonlinear inductance modelling. Experimental result shows the validity of the switching angle controller.

Electrical properties of multilayer actuator and linear ultrasonic motor using low temperature PZW-PMN-PZT ceramics (저온소결 PZW-PMN-PZT 세라믹을 이용한 적층액츄에이터 및 선형초음파 모터의 전긱적 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.206-206
    • /
    • 2008
  • 압전소자를 이용한 초음파 모터는 전자기적 원리로 동작하는 기존의 모터에 비해 구조가 간단하고 소형, 경량화가 가능하며 저속에서 큰 토크가 가능하고 ${\mu}m$단위 까지 정밀제어가 가능하다는 장점 등으로 인해 그 응용분야가 점차 확대되고 있다. 초음파 모터의 원리는 수평과 수직방향에서 변위가 타원형 운동을 형성하는 것이다. 따라서 선택한 타원운동의 방식에 의해서 모터의 형상이 달라진다. 초음파 모터는 액츄에이터를 사용하여 만들기 때문에 액츄에이터의 특성은 모터의 타원변위나 토크에 영향을 미친다. 단판형 액츄에이터에 비하여 적층 액츄에이터는 입력 임피던스를 낮추어 낮은 구동전압에서 구동이 가능하며 큰 변위와 토크를 발생하기 때문에 진동자의 수명 향상과 구동전압을 낮추기에 적합하다. 적층 액츄에이터는 변위량이나 응력 등을 개선하기 위해서 전기기계 결합계수(kp) 및 압전 d상수가 큰 재료가 요구되며, 고전압에서 장시간 구동 시 마찰에 의한 열손실을 감소시키기 위해 높은 기계적 품질계수(Qm)를 가져야한다. 적층 시 내부전극으로 사용하는 Pd, Pt가 함유된 전극은 가격이 비싸 제조비용을 상승시킨다. 상대적으로 값싼 Ag전극을 사용하면 비용절감을 할 수 있지만 융점이 낮아서 저온소결이 불가피하다. 따라서, 특성이 우수한 적층 액츄에이터를 제조하기 위해서 저손실, 저온소결 할 수 있는 액츄에이터 재료가 필요한 실정이다. L1-B4 혈 선혈 초음파 모터는 L1모드와 B4모드의 공진 주파수가 일치하여야 큰 변위를 얻을 수 있는데 이전의 논문에서 Atila를 이용한 시뮬레이션 결과를 분석한 봐 있다. 적층 액츄에이터의 층수를 5,7,9,11,13,15층으로 하여 L1-B4모드에서의 공진주파수를 비교한 결과 13 층일 때 두 모드가 비슷한 공진주파수를 보였고, 티원변위궤적도 다른 층수에 비해 크게 나타났다. 본 연구에서는 시뮬레이션 결과 가장 좋은 특성을 보인 13층 액츄에이터로 선형 초음파 모터를 제작하였다. 또한, 액츄에이터는 압전 및 유전특성이 우수한 저온소결 PZW-PMN-PZT세라믹을 이용하여 제작하였고, 내부전극으로 Ag전극을 사용하였다. 제작된 13 층 선형초음파모터를 가지고 프리로드 및 전압에 따른 속도를 조사하였고, 시뮬레이션 결과와 비교해 보았다.

  • PDF

Maximum Torque Operation of SRM by using a Self-tuning Control Method (SRM의 최대 토크 운전을 위한 자기동조 제어)

  • 서종윤;김광헌;장도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 2004
  • This paper presents a Switched Reluctance Motor(SRM) drive using the self-tuning control method to achieve the maximum torque. SRM has the difficulty to research it by an analytic method and to control the speed End torque because of the high nonlinearity. So, in this paper, the self-tuning control method is applied to relevantly controlling turn-on/off angle to operate at the maximum torque. Also, the feedback signals to control the turn-on/off angle are the encoder pulse and the increment of phase current. At first, n adequate turn-off angle is searched by itself and then a turn-on angle is done. As the relationship between turn-on and him-off angle is mutual dependent, the turn-on/off angle is controlled by a real time self-tuning control method in order to maintain the maximum torque. The proposed self-tuning Algorithm is verified by experiments.

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Performance Analysis of an Electro-Hydrostatic Actuator (Electro-Hydrostatic Actuator의 성능해석)

  • Kim, Do-Hyun;Kim, Doo-Man;Hong, Yeh-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.316-322
    • /
    • 2007
  • The EHA(Electro-hydrostatic Actuator) reveals completely different characteristics from the conventional valve-controlled Electro-hydraulic actuators. In this paper, its mathematical model including nonlinear elements was derived to be verified by experiments. Based on this, a simulation program was developed for the EHAs consisting of an electric motor driven hydraulic pump, pipe lines and a cylinder. The influence of important design parameters such as peak motor torque and rotational inertia moment of the hydraulic pump on control performance was investigated, where the test condition was intentionally selected so that the motor torque was saturated during the transient phase. As a result, design requirements for improving the control accuracy under full speed operation conditions of the EHAs were investigated.

Nonlinear Iterative Solution for Adhesively Bonded Tubular Single Lap Joints with Nonlinear Shear Properties (튜브형 단면겹치기 접착조인트의 비선형 반복연산해에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1651-1656
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.