• Title/Summary/Keyword: 비선형 유한요소해석 프로그램

Search Result 271, Processing Time 0.032 seconds

Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading (반복하중을 받는 철근콘크리트 휨부재의 비선형해석)

  • 변근주;김영진
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1991
  • This paper concentrates on the nonlinear analysis of the reinforced concrete flexural members under cyclic loading. To develop a nonlinear material model, concrete is treated as an orthotropic nonlinear material and steel is modeled as an elasto-plastic material. The models for hysteresis behavior with stiffness degradation in compression and for crack opening and closing in tension are included. The finite element computer program for the nonlinear analysis of RC flexural members under cyclic loading is developed. The accuracy and reliabihty of the numerical procedure IS demonstrated by the FEM analysis and test results of underreinforced concrete beams.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Performance Analysis of LIPCA Actuator considering Material Non-linearity of embedded PZT wafer (압전 세라믹의 재료 비선형성을 고려한 LIPCA 작동기의 성능 해석)

  • Lee, Sang-Ki;Kim, Young-Sung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Cho, Chahng-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.37-44
    • /
    • 2004
  • This paper deals with the performance analysis of LIPCA(Light-weight Piezo-Composite actuator) including the material nun-linearity of the embedded 3203HD PZT wafer. For this analysis, we used a piezo-shell element code based on a nine-node assumed strain shell element formulation. The material non-linearity was implemented in the formulation due to a large observed discrepancy between the measured displacement and the computed actuation displacement based on the linear analysis. An experimentally extracted piezo-strain function of the PZT wafer and incremental formulation were incorporated into the linear finite element code to improve the accuracy of the estimated actuation displacement of the LIPCA. The non-linear piezo-shell program was used to predict the non-linear performance of the LIPCA. The simulated actuation displacement from the non-linear code showed much better agreement with the measured data.

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads (등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동)

  • Kim, Choong-Man;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.

Non-linear Finite Element Analysis of Steel Members Under Very-Low-Cycles of Loading (극저사이클 하중하에서 강구조 부재의 비선형 유한요소해석)

  • 박연수
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.61-67
    • /
    • 1994
  • The objective of this numerical analysis is to trace the hysteretic behavior of steel angles under very-low-cycle loading test, especially the history and cumulative state of local stress-strain at their critical parts. The computer model is based on a three-dimensional, non-linear analysis by using the finite element program, MSC/NASTRAN, which includes the effects of the material and geometric non-linearities. The analysis was performed as two stage procedures, namely Analysis I and II. The overall behavior from this analysis showed good agreement with the experiment.

  • PDF

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites (FRP로 전단보강된 철근콘크리트 보의 비선형 해석)

  • Kim, Sang-Woo;Hwang, Hyun-Bok;Lee, Bum-Sik;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.835-838
    • /
    • 2008
  • This study presents the nonlinear finite element analysis to predict the behavior of reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer laminates (FRP). In this paper, modeling concept for the FRP is introduced to enable the use of finite element methods for the shear analysis of RC beams shear-strengthened with FRP composites. The numerical techniques are used to represent the FRP composite, bond properties between the FRP and the concrete, and the RC beams. According to the proposed modeling methods, a finite element analysis is performed using a two-dimensional nonlinear finite element analysis program, VecTor2, based on the Disturbed Stress Field Model (DSFM). To verify the application of the DSFM for the prediction of the behavior of the shear-critical beams strengthened with FRP composites in shear, a detailed comparison between experimental and numerical results for the response of the RC beams is carried out.

  • PDF