• Title/Summary/Keyword: 비선형 시스템 식별

Search Result 65, Processing Time 0.027 seconds

Online GA-based Nonlinear System Identification (온라인 GA 기반 비선형 시스템 식별)

  • Lee, Jung-Youn;Lee, Hong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.820-824
    • /
    • 2010
  • Genetic algorithm is known to be an effective method to solve a global nonlinear optimization. However, a huge amount of calculation is needed to improve the dependability of the solution and thus Ga is not adequate for online implementation. In this paper, we propose an online nonlinear system identification scheme which employs population feedback genetic algorithm. The effectiveness of our scheme is shown by several simulations.

Seismic Response Estimation and System Identification of Test Steel Structure Using Approximate Nonlinear Filter (비선형 근사필터에 강구조시험체의 지진응답추정 및 동특성식별)

  • 배기환;김두영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.67-72
    • /
    • 2001
  • 대상으로 하는 시스템의 입출력신호에 근거하여, 시스템의 수학적 모델을 결정하는 것을 총칭하여 시스템식별이라 한다. 본 논문에서는 지진응답 관측치를 입출력신호로 하여 조건부대치를 최적치로 판단하는 비선형근사필터법을 사용한 건축구조물의 지진응답추정 및 파라미터식별에 관하여 논한다. 비선형근사필터법에 의한 건축구조물식별의 유효성의 적용성을 판단하기 위해, 진동대를 사용하여 강구조시험체의 진동실험을 행하고 결과적으로 얻어진 시험체의 수학적 모델에 대한 지진응답 수치해석결과와 진동실험에서의 관측기록을 비교하여 본 식별법의 타당성을 보인다.

  • PDF

Design of GAS Identification System using GA-FS (GA-FS를 이용한 GAS 식별 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Sun;Byun, Hyung-Gi;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1774-1775
    • /
    • 2011
  • 퍼지이론은 비선형적 데이터의 취급에 있어 강력한 수단이 될 수 있으며, 본 논문에서는 퍼지시스템을 인간의 후각을 모사한 GAS 식별 시스템의 설계에 적용하였다. 먼저, 다수의 센서들의 특성 분석에 따라 GA를 이용하여 그룹화를 시킨 후 각각의 그룹들에서 나타나는 데이터들의 특성에 맞게 퍼지시스템을 설계하여, 센서들의 유동적 특성에 따른 조합과 퍼지시스템의 비선형 데이터에 대한 기술능력을 모두 수용할 수 있는 식별 시스템을 설계하였다. 마지막으로 성능 검증을 통해 하나의 퍼지시스템을 선택함으로써, 유동적 특성이 큰 센서들의 성능을 배제할 수 있도록 하여 보다 정확한 식별이 가능하도록 시스템을 설계 하였다.

  • PDF

Control Method of an Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;임중규;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.487-492
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method is composed of neural network of state space model type, performs for a unknown nonlinear system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF

A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구)

  • Kim, Hong-Bok;Kim, Jeong-Keun;Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • This paper deals with a nonlinear system modelling using neural network and genetic algorithm Application q{ neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. in this paper, we optimize a neural network structure using genetic algorithm The genetic algorithm uses binary coding for neural network structure and searches for an optimal neural network structure of minimum error and fast response time. Through an extensive simulation, the optimal neural network structure is shown to be effective for identification of nonlinear system.

Indirect Neuro-Control of Nonlinear Multivariable Servomechanisms (비선형 다변수 시스템의 간접신경망제어)

  • Jang, Jun-Oh;Lee, Pyeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.14-22
    • /
    • 2001
  • This paper presents identification and control designs using neural networks for a class of multivariable nonlinear servomechanisms. A proposed neuro-controller is a combination of linear controllers and a neural network, and is trained by indirect neuro-control scheme. The proposed neuro-controller is implemented and tested on an IBM PC-based two 2 bar systems holding an object, and is applicable to many de-motor-driven precision multivariable nonlinear servomechanisms. The ideas, algorithm, and experimental results arc described. Moreover, experimental results are shown to be superior to those of conventional control.

  • PDF

On Some collinearities with Some Observations in Linear Regression (선형회귀모형에서 다공선성을 은폐 혹은 확대하는 관찰치에 관한 식별)

  • Kim, Seung Gu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.59-65
    • /
    • 1994
  • 선형회귀모형에서 새로운 변수가 모형에 도입될때 몇몇 비정상적인 관찰치들은 변수들 간에 내재되어 있는 다공선성을 감추거나 혹은 오히려 더욱 크게 부풀림으로써 도입변수에 대한 해석을 매우 어렵게 만든다. 본고에서는 이러한 관찰치들을 식별할 수 있는 방법을 제안하였는데, 이와 같은 식별법은 postulated model의 회귀계수추정치에 대한 도입변수의 섭등(perturbations)을 분해함으로써 가능하였다.

  • PDF

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.